前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >AI人工智能三要素:数据、算力和算法

AI人工智能三要素:数据、算力和算法

作者头像
用户7164815
发布2020-04-08 11:16:25
3.1K0
发布2020-04-08 11:16:25
举报
文章被收录于专栏:AI人工智能与大数据

人工智能这两年的火爆大家有目共睹,取得的一些技术进步大家想必也有所耳闻。这里就来谈谈人工智能的三要素:数据、算力和算法。

首先,这三要素缺一不可,都是人工智能取得如此成就的必备条件。如果非要给这三者排个序的话,我认为应该是数据、算力和算法。

第一是数据。因为人工智能的根基是训练,就如同人类如果要获取一定的技能,那必须经过不断地训练才能获得,而且有熟能生巧之说。AI也是如此,只有经过大量的训练,神经网络才能总结出规律,应用到新的样本上。如果现实中出现了训练集中从未有过的场景,则网络会基本处于瞎猜状态,正确率可想而知。比如需要识别勺子,但训练集中勺子总和碗一起出现,网络很可能学到的是碗的特征,如果新的图片只有碗,没有勺子,依然很可能被分类为勺子。因此,对于AI而言,大量的数据太重要了,而且需要覆盖各种可能的场景,这样才能得到一个表现良好的模型,看起来更智能。

第二是算力。有了数据之后,需要进行训练,不断地训练。AI中有一个术语叫epoch,意思是把训练集翻过来、调过去训练多少轮。只把训练集从头到尾训练一遍网络是学不好的,就像和小孩说一个道理,一遍肯定学不会,过目不忘那就是神童了,不过我至今还没见到过。当然,除了训练(train),AI实际需要运行在硬件上,也需要推理(inference),这些都需要算力的支撑。

第三是算法。其实大家现在算法谈得很多,也显得很高端,但其实某种程度上来说算法是获取成本最低的。现在有很多不错的paper,开源的网络代码,各种AutoML自动化手段,使得算法的门槛越来越低。另外提一点,算法这块其实是创业公司比较容易的切入点,数据很多人会觉得low,会认为就是打打标签而已,所以愿意做的不多;算力需要芯片支撑,是大公司争夺的主要阵地,留下的只有算法了。

不过,如果想做一个非常成功的AI应用,这三者都需要具备,所谓天时地利人和。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-08-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI人工智能与大数据 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
人工智能与机器学习
提供全球领先的人脸识别、文字识别、图像识别、语音技术、NLP、人工智能服务平台等多项人工智能技术,共享 AI 领域应用场景和解决方案。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档