
将会用到来自作者的包装好的analysis_functions.R代码:
https://github.com/IStevant/XX-XY-mouse-gonad-scRNA-seq/blob/master/scripts/analysis_functions.R
这个代码有1800多行,将会贯穿整个分析,正是这些DIY的代码,才让文章的图显得与众不同
load(file="female_rpkm.Robj")
## 去掉重复细胞
#(例如:同一个细胞建库两次,这里作者用“rep”进行了标记)
grep("rep",colnames(female_rpkm))
colnames(female_rpkm)[256:257]
female_rpkm <- female_rpkm[,!colnames(female_rpkm) %in% grep("rep",colnames(female_rpkm), value=TRUE)]
## 只保留编码基因(去掉类似:X5430419D17Rik、BC003331等)
prot_coding_genes <- read.csv(file="prot_coding.csv", row.names=1)
females <- female_rpkm[rownames(female_rpkm) %in% as.vector(prot_coding_genes$x),]
save(females,file = 'female_rpkm.Rdata')
细胞是从6个时间点取出的,于是先找到这6个时间点
load('../female_rpkm.Rdata')
> dim(females)
[1] 21083 563
> head(colnames(females))
[1] "E10.5_XX_20140505_C01_150331_1" "E10.5_XX_20140505_C02_150331_1"
[3] "E10.5_XX_20140505_C03_150331_1" "E10.5_XX_20140505_C04_150331_2"
[5] "E10.5_XX_20140505_C06_150331_2" "E10.5_XX_20140505_C07_150331_3"
## 取下划线分隔的第一部分
female_stages <- sapply(strsplit(colnames(females), "_"), `[`, 1)
# 或者
female_stages <- sapply(strsplit(colnames(females), "_"),
function(x)x[1])
# 再或者
female_stages <- stringr::str_split(colnames(females),'_', simplify = T)[,1]
names(female_stages) <- colnames(females)
> table(female_stages)
female_stages
E10.5 E11.5 E12.5 E13.5 E16.5 P6
68 100 103 99 85 108
> (dim(females))
[1] 21083 563
> females <- females[rowSums(females)>0,]
> (dim(females))
[1] 16765 563
可以看到去掉了4000多个
# 利用apply函数对每行(每个基因)进行统计
mean_per_gene <- apply(females, 1, mean, na.rm = TRUE)
sd_per_gene <- apply(females, 1, sd, na.rm = TRUE)
mad_per_gene <- apply(females, 1, mad, na.rm = TRUE)
cv = sd_per_gene/mean_per_gene
library(matrixStats)
var_per_gene <- rowVars(as.matrix(females))
cv2=var_per_gene/mean_per_gene^2
# 存储统计结果
cv_per_gene <- data.frame(mean = mean_per_gene,
sd = sd_per_gene,
mad=mad_per_gene,
var=var_per_gene,
cv=cv,
cv2=cv2)
rownames(cv_per_gene) <- rownames(females)
head(cv_per_gene)
# 根据表达量过滤统计结果
cv_per_gene=cv_per_gene[cv_per_gene$mean>1,]
# 简易的可视化
with(cv_per_gene,plot(log10(mean),log10(cv2)))
CV值,它表示变异系数(coefficient of variation)。变异系数又称离散系数或相对偏差 ,我们肯定都知道标准偏差,也就是sd值,sd描述了数据值偏离算术平均值的程度。这个相对偏差CV描述的是标准偏差与平均值之比。

其实就是求每列之间的相关性
library(psych)
pairs.panels(cv_per_gene,
method = "pearson", # correlation method
hist.col = "#00AFBB",
density = TRUE, # show density plots
ellipses = TRUE # show correlation ellipses
)
可以得到不同统计指标的关系

females_data <- getMostVarGenes(females, fitThr=2)
> dim(females_data)
[1] 822 563
这个函数也找了822个变化比较大的基因,用于下游分析,这其实也很像Seurat的FindVariableFeatures()做的事情

females_data <- log(females_data+1)
> females_data[1:4,1:4]
E10.5_XX_20140505_C01_150331_1 E10.5_XX_20140505_C02_150331_1
Ngfr 0 0
Slc22a18 0 0
Tspan32 0 0
Gmpr 0 0
E10.5_XX_20140505_C03_150331_1 E10.5_XX_20140505_C04_150331_2
Ngfr 0.4204863 3.619946
Slc22a18 0.0000000 0.000000
Tspan32 0.0000000 0.000000
Gmpr 0.0000000 0.000000
save(females_data,file = 'females_hvg_matrix.Rdata')
针对上面的822个HVGs进行操作
female_sub_pca <- FactoMineR::PCA(
t(females_data),
ncp = ncol(females_data),
graph=FALSE
)
然后挑选最显著的主成分,作为tSNE的输入
记得在Seurat中是使用
ElbowPlot()关注肘部的PC,这里不需要观察,直接返回最优解
significant_pcs <- jackstraw::permutationPA(
female_sub_pca$ind$coord,
B = 100,
threshold = 0.05,
verbose = TRUE,
seed = NULL
)$r
> significant_pcs
[1] 9
# 6个时期给定6个颜色
female_stagePalette <- c(
"#2754b5",
"#8a00b0",
"#d20e0f",
"#f77f05",
"#f9db21",
"#43f14b"
)
female_t_sne <- run_plot_tSNE(
pca=female_sub_pca,
pc=significant_pcs,
iter=5000,
conditions=female_stages,
colours=female_stagePalette
)

采用的方法是:Hierarchical Clustering On Principle Components (HCPC)
# 使用9个显著主成分重新跑PCA
res.pca <- FactoMineR::PCA(
t(females_data),
ncp = significant_pcs,
graph=FALSE
)
# 作者根据经验认为分成4群比较好解释,于是设置4
res.hcpc <- FactoMineR::HCPC(
res.pca,
graph = FALSE,
min=4
)
# 得到分群结果
female_clustering <- res.hcpc$data.clust$clust
> table(female_clustering)
female_clustering
1 2 3 4
90 240 190 43
# 重新命名
female_clustering <- paste("C", female_clustering, sep="")
names(female_clustering) <- rownames(res.hcpc$data.clust)
# 将C1和C2调换位置
female_clustering[female_clustering=="C1"] <- "C11"
female_clustering[female_clustering=="C2"] <- "C22"
female_clustering[female_clustering=="C22"] <- "C1"
female_clustering[female_clustering=="C11"] <- "C2"
> table(female_clustering)
female_clustering
C1 C2 C3 C4
240 90 190 43
write.csv(female_clustering, file="female_clustering.csv")
# 为4种cluster设置颜色
female_clusterPalette <- c(
"#560047",
"#a53bad",
"#eb6bac",
"#ffa8a0"
)
> head(female_t_sne)
tSNE_1 tSNE_2 cond
E10.5_XX_20140505_C01_150331_1 -2.714291 -24.47912 E10.5
E10.5_XX_20140505_C02_150331_1 -1.580757 -26.45072 E10.5
E10.5_XX_20140505_C03_150331_1 -1.577123 -25.36753 E10.5
E10.5_XX_20140505_C04_150331_2 -6.677577 -20.00208 E10.5
E10.5_XX_20140505_C06_150331_2 3.442235 -23.32570 E10.5
E10.5_XX_20140505_C07_150331_3 3.793953 -23.33955 E10.5
# 作者包装的函数
female_t_sne_new_clusters <- plot_tSNE(
tsne=female_t_sne,
conditions=female_clustering,
colours= female_clusterPalette
)
ggsave('tSNE_cluster.pdf')
