Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >【秒杀系统】零基础上手秒杀系统(三):抢购接口隐藏 + 单用户限制频率

【秒杀系统】零基础上手秒杀系统(三):抢购接口隐藏 + 单用户限制频率

原创
作者头像
蛮三刀酱
修改于 2020-03-30 02:31:24
修改于 2020-03-30 02:31:24
1K0
举报

前言

时光飞逝,两周过去了,是时候继续填坑了,不然又要被网友喷了。

本文是秒杀系统的第三篇,通过实际代码讲解,帮助你了解秒杀系统设计的关键点,上手实际项目。

本篇主要讲解秒杀系统中,关于抢购(下单)接口相关的单用户防刷措施,主要说两块内容:

  • 抢购接口隐藏
  • 单用户限制频率(单位时间内限制访问次数)

当然,这两个措施放在任何系统中都有用,严格来说并不是秒杀系统独特的设计,所以今天的内容也会比较的通用。

此外,我做了一张流程图,描述了目前我们实现的秒杀接口下单流程:

前文回顾和文章规划

欢迎关注我的个人公众号获取最全的原创文章:后端技术漫谈(二维码见文章底部)

项目源码在这里

妈妈再也不用担心只会看文章不会实现啦:

https://github.com/qqxx6661/miaosha

正文

秒杀系统介绍

可以翻阅该系列的第一篇文章,这里不再回顾:

零基础上手秒杀系统(一):防止超卖

抢购接口隐藏

在前两篇文章的介绍下,我们完成了防止超卖商品和抢购接口的限流,已经能够防止大流量把我们的服务器直接搞炸,这篇文章中,我们要开始关心一些细节问题。

对于稍微懂点电脑的,又会动歪脑筋的人来说,点击F12打开浏览器的控制台,就能在点击抢购按钮后,获取我们抢购接口的链接。(手机APP等其他客户端可以抓包来拿到)

一旦坏蛋拿到了抢购的链接,只要稍微写点爬虫代码,模拟一个抢购请求,就可以不通过点击下单按钮,直接在代码中请求我们的接口,完成下单。所以就有了成千上万的薅羊毛军团,写一些脚本抢购各种秒杀商品。

他们只需要在抢购时刻的000毫秒,开始不间断发起大量请求,觉得比大家在APP上点抢购按钮要快,毕竟人的速度又极限,更别说APP说不定还要经过几层前端验证才会真正发出请求。

所以我们需要将抢购接口进行隐藏,抢购接口隐藏(接口加盐)的具体做法

  • 每次点击秒杀按钮,先从服务器获取一个秒杀验证值(接口内判断是否到秒杀时间)。
  • Redis以缓存用户ID和商品ID为Key,秒杀地址为Value缓存验证值
  • 用户请求秒杀商品的时候,要带上秒杀验证值进行校验。

大家先停下来仔细想想,通过这样的办法,能够防住通过脚本刷接口的人吗?

能,也不能。

可以防住的是直接请求接口的人,但是只要坏蛋们把脚本写复杂一点,先去请求一个验证值,再立刻请求抢购,也是能够抢购成功的。

不过坏蛋们请求验证值接口,也需要在抢购时间开始后,才能请求接口拿到验证值,然后才能申请抢购接口。理论上来说在访问接口的时间上受到了限制,并且我们还能通过在验证值接口增加更复杂的逻辑,让获取验证值的接口并不快速返回验证值,进一步拉平普通用户和坏蛋们的下单时刻。所以接口加盐还是有用的!

下面我们就实现一种简单的加盐接口代码,抛砖引玉。

代码逻辑实现

代码还是使用之前的项目,我们在其上面增加两个接口:

  • 获取验证值接口
  • 携带验证值下单接口

由于之前我们只有两个表,一个stock表放库存商品,一个stockOrder订单表,放订购成功的记录。但是这次涉及到了用户,所以我们新增用户表,并且添加一个用户张三。并且在订单表中,不仅要记录商品id,同时要写入用户id。

整个SQL结构如下,讲究一个简洁,暂时不加入别的多余字段:

代码语言:txt
AI代码解释
复制
-- ----------------------------
-- Table structure for stock
-- ----------------------------
DROP TABLE IF EXISTS `stock`;
CREATE TABLE `stock` (
  `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
  `name` varchar(50) NOT NULL DEFAULT '' COMMENT '名称',
  `count` int(11) NOT NULL COMMENT '库存',
  `sale` int(11) NOT NULL COMMENT '已售',
  `version` int(11) NOT NULL COMMENT '乐观锁,版本号',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=utf8;

-- ----------------------------
-- Records of stock
-- ----------------------------
INSERT INTO `stock` VALUES ('1', 'iphone', '50', '0', '0');
INSERT INTO `stock` VALUES ('2', 'mac', '10', '0', '0');

-- ----------------------------
-- Table structure for stock_order
-- ----------------------------
DROP TABLE IF EXISTS `stock_order`;
CREATE TABLE `stock_order` (
  `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
  `sid` int(11) NOT NULL COMMENT '库存ID',
  `name` varchar(30) NOT NULL DEFAULT '' COMMENT '商品名称',
  `user_id` int(11) NOT NULL DEFAULT '0',
  `create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '创建时间',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

-- ----------------------------
-- Records of stock_order
-- ----------------------------

-- ----------------------------
-- Table structure for user
-- ----------------------------
DROP TABLE IF EXISTS `user`;
CREATE TABLE `user` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `user_name` varchar(255) NOT NULL DEFAULT '',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8mb4;

-- ----------------------------
-- Records of user
-- ----------------------------
INSERT INTO `user` VALUES ('1', '张三');

SQL文件在开源代码里也放了,不用担心。

获取验证值接口

该接口要求传用户id和商品id,返回验证值,并且该验证值

Controller中添加方法:

代码语言:txt
AI代码解释
复制
/**
 * 获取验证值
 * @return
 */
@RequestMapping(value = "/getVerifyHash", method = {RequestMethod.GET})
@ResponseBody
public String getVerifyHash(@RequestParam(value = "sid") Integer sid,
                            @RequestParam(value = "userId") Integer userId) {
    String hash;
    try {
        hash = userService.getVerifyHash(sid, userId);
    } catch (Exception e) {
        LOGGER.error("获取验证hash失败,原因:[{}]", e.getMessage());
        return "获取验证hash失败";
    }
    return String.format("请求抢购验证hash值为:%s", hash);
}

UserService中添加方法:

代码语言:txt
AI代码解释
复制
@Override
public String getVerifyHash(Integer sid, Integer userId) throws Exception {

    // 验证是否在抢购时间内
    LOGGER.info("请自行验证是否在抢购时间内");


    // 检查用户合法性
    User user = userMapper.selectByPrimaryKey(userId.longValue());
    if (user == null) {
        throw new Exception("用户不存在");
    }
    LOGGER.info("用户信息:[{}]", user.toString());

    // 检查商品合法性
    Stock stock = stockService.getStockById(sid);
    if (stock == null) {
        throw new Exception("商品不存在");
    }
    LOGGER.info("商品信息:[{}]", stock.toString());

    // 生成hash
    String verify = SALT + sid + userId;
    String verifyHash = DigestUtils.md5DigestAsHex(verify.getBytes());

    // 将hash和用户商品信息存入redis
    String hashKey = CacheKey.HASH_KEY.getKey() + "_" + sid + "_" + userId;
    stringRedisTemplate.opsForValue().set(hashKey, verifyHash, 3600, TimeUnit.SECONDS);
    LOGGER.info("Redis写入:[{}] [{}]", hashKey, verifyHash);
    return verifyHash;
}

一个Cache常量枚举类CacheKey:

代码语言:txt
AI代码解释
复制
package cn.monitor4all.miaoshadao.utils;

public enum CacheKey {
    HASH_KEY("miaosha_hash"),
    LIMIT_KEY("miaosha_limit");

    private String key;

    private CacheKey(String key) {
        this.key = key;
    }
    public String getKey() {
        return key;
    }
}

代码解释:

可以看到在Service中,我们拿到用户id和商品id后,会检查商品和用户信息是否在表中存在,并且会验证现在的时间(我这里为了简化,只是写了一行LOGGER,大家可以根据需求自行实现)。在这样的条件过滤下,才会给出hash值。并且将Hash值写入了Redis中,缓存3600秒(1小时),如果用户拿到这个hash值一小时内没下单,则需要重新获取hash值。

下面又到了动小脑筋的时间了,想一下,这个hash值,如果每次都按照商品+用户的信息来md5,是不是不太安全呢。毕竟用户id并不一定是用户不知道的(就比如我这种用自增id存储的,肯定不安全),而商品id,万一也泄露了出去,那么坏蛋们如果再知到我们是简单的md5,那直接就把hash算出来了!

在代码里,我给hash值加了个前缀,也就是一个salt(盐),相当于给这个固定的字符串撒了一把盐,这个盐是HASH_KEY("miaosha_hash"),写死在了代码里。这样黑产只要不猜到这个盐,就没办法算出来hash值。

这也只是一种例子,实际中,你可以把盐放在其他地方, 并且不断变化,或者结合时间戳,这样就算自己的程序员也没法知道hash值的原本字符串是什么了。

携带验证值下单接口

用户在前台拿到了验证值后,点击下单按钮,前端携带着特征值,即可进行下单操作。

Controller中添加方法:

代码语言:txt
AI代码解释
复制
/**
 * 要求验证的抢购接口
 * @param sid
 * @return
 */
@RequestMapping(value = "/createOrderWithVerifiedUrl", method = {RequestMethod.GET})
@ResponseBody
public String createOrderWithVerifiedUrl(@RequestParam(value = "sid") Integer sid,
                                         @RequestParam(value = "userId") Integer userId,
                                         @RequestParam(value = "verifyHash") String verifyHash) {
    int stockLeft;
    try {
        stockLeft = orderService.createVerifiedOrder(sid, userId, verifyHash);
        LOGGER.info("购买成功,剩余库存为: [{}]", stockLeft);
    } catch (Exception e) {
        LOGGER.error("购买失败:[{}]", e.getMessage());
        return e.getMessage();
    }
    return String.format("购买成功,剩余库存为:%d", stockLeft);
}

OrderService中添加方法:

代码语言:txt
AI代码解释
复制
@Override
public int createVerifiedOrder(Integer sid, Integer userId, String verifyHash) throws Exception {

    // 验证是否在抢购时间内
    LOGGER.info("请自行验证是否在抢购时间内,假设此处验证成功");

    // 验证hash值合法性
    String hashKey = CacheKey.HASH_KEY.getKey() + "_" + sid + "_" + userId;
    String verifyHashInRedis = stringRedisTemplate.opsForValue().get(hashKey);
    if (!verifyHash.equals(verifyHashInRedis)) {
        throw new Exception("hash值与Redis中不符合");
    }
    LOGGER.info("验证hash值合法性成功");

    // 检查用户合法性
    User user = userMapper.selectByPrimaryKey(userId.longValue());
    if (user == null) {
        throw new Exception("用户不存在");
    }
    LOGGER.info("用户信息验证成功:[{}]", user.toString());

    // 检查商品合法性
    Stock stock = stockService.getStockById(sid);
    if (stock == null) {
        throw new Exception("商品不存在");
    }
    LOGGER.info("商品信息验证成功:[{}]", stock.toString());

    //乐观锁更新库存
    saleStockOptimistic(stock);
    LOGGER.info("乐观锁更新库存成功");

    //创建订单
    createOrderWithUserInfo(stock, userId);
    LOGGER.info("创建订单成功");

    return stock.getCount() - (stock.getSale()+1);
}

代码解释:

可以看到service中,我们需要验证了:

  • 商品信息
  • 用户信息
  • 时间
  • 库存

如此,我们便完成了一个拥有验证的下单接口。

试验一下接口

我们先让用户1,法外狂徒张三登场,发起请求:

代码语言:txt
AI代码解释
复制
http://localhost:8080/getVerifyHash?sid=1&userId=1

得到结果:

控制台输出:

别急着下单,我们看一下redis里有没有存储好key:

木偶问题,接下来,张三可以去请求下单了!

代码语言:txt
AI代码解释
复制
http://localhost:8080/createOrderWithVerifiedUrl?sid=1&userId=1&verifyHash=d4ff4c458da98f69b880dd79c8a30bcf

得到输出结果:

法外狂徒张三抢购成功了!

单用户限制频率

假设我们做好了接口隐藏,但是像我上面说的,总有无聊的人会写一个复杂的脚本,先请求hash值,再立刻请求购买,如果你的app下单按钮做的很差,大家都要开抢后0.5秒才能请求成功,那可能会让脚本依然能够在大家前面抢购成功。

我们需要在做一个额外的措施,来限制单个用户的抢购频率。

其实很简单的就能想到用redis给每个用户做访问统计,甚至是带上商品id,对单个商品做访问统计,这都是可行的。

我们先实现一个对用户的访问频率限制,我们在用户申请下单时,检查用户的访问次数,超过访问次数,则不让他下单!

使用Redis/Memcached

我们使用外部缓存来解决问题,这样即便是分布式的秒杀系统,请求被随意分流的情况下,也能做到精准的控制每个用户的访问次数。

Controller中添加方法:

代码语言:txt
AI代码解释
复制
/**
 * 要求验证的抢购接口 + 单用户限制访问频率
 * @param sid
 * @return
 */
@RequestMapping(value = "/createOrderWithVerifiedUrlAndLimit", method = {RequestMethod.GET})
@ResponseBody
public String createOrderWithVerifiedUrlAndLimit(@RequestParam(value = "sid") Integer sid,
                                                 @RequestParam(value = "userId") Integer userId,
                                                 @RequestParam(value = "verifyHash") String verifyHash) {
    int stockLeft;
    try {
        int count = userService.addUserCount(userId);
        LOGGER.info("用户截至该次的访问次数为: [{}]", count);
        boolean isBanned = userService.getUserIsBanned(userId);
        if (isBanned) {
            return "购买失败,超过频率限制";
        }
        stockLeft = orderService.createVerifiedOrder(sid, userId, verifyHash);
        LOGGER.info("购买成功,剩余库存为: [{}]", stockLeft);
    } catch (Exception e) {
        LOGGER.error("购买失败:[{}]", e.getMessage());
        return e.getMessage();
    }
    return String.format("购买成功,剩余库存为:%d", stockLeft);
}

UserService中增加两个方法:

  • addUserCount:每当访问订单接口,则增加一次访问次数,写入Redis
  • getUserIsBanned:从Redis读出该用户的访问次数,超过10次则不让购买了!不能让张三做法外狂徒。
代码语言:txt
AI代码解释
复制
@Override
    public int addUserCount(Integer userId) throws Exception {
        String limitKey = CacheKey.LIMIT_KEY.getKey() + "_" + userId;
        String limitNum = stringRedisTemplate.opsForValue().get(limitKey);
        int limit = -1;
        if (limitNum == null) {
            stringRedisTemplate.opsForValue().set(limitKey, "0", 3600, TimeUnit.SECONDS);
        } else {
            limit = Integer.parseInt(limitNum) + 1;
            stringRedisTemplate.opsForValue().set(limitKey, String.valueOf(limit), 3600, TimeUnit.SECONDS);
        }
        return limit;
    }

    @Override
    public boolean getUserIsBanned(Integer userId) {
        String limitKey = CacheKey.LIMIT_KEY.getKey() + "_" + userId;
        String limitNum = stringRedisTemplate.opsForValue().get(limitKey);
        if (limitNum == null) {
            LOGGER.error("该用户没有访问申请验证值记录,疑似异常");
            return true;
        }
        return Integer.parseInt(limitNum) > ALLOW_COUNT;
    }

试一试接口

使用前文用的JMeter做并发访问接口30次,可以看到下单了10次后,不让再购买了:

大功告成了。

能否不用Redis/Memcached实现用户访问频率统计

且慢,如果你说你不愿意用redis,有什么办法能够实现访问频率统计吗,有呀,如果你放弃分布式的部署服务,那么你可以在内存中存储访问次数,比如:

  • Google Guava的内存缓存
  • 状态模式

不知道大家的设计模式复习的怎么样了,如果没有复习到状态模式,可以先去看看状态模式的定义。状态模式很适合实现这种访问次数限制场景。

我的博客和公众号(后端技术漫谈)里,写了个《设计模式自习室》系列,详细介绍了每种设计模式,大家有兴趣可可以看看。【设计模式自习室】开篇:为什么要有设计模式?

这里我就不实现了,毕竟咱们还是分布式秒杀服务为主,不过引用一个博客的例子,大家感受下状态模式的实际应用:

https://www.cnblogs.com/java-my-life/archive/2012/06/08/2538146.html

考虑一个在线投票系统的应用,要实现控制同一个用户只能投一票,如果一个用户反复投票,而且投票次数超过5次,则判定为恶意刷票,要取消该用户投票的资格,当然同时也要取消他所投的票;如果一个用户的投票次数超过8次,将进入黑名单,禁止再登录和使用系统。

代码语言:txt
AI代码解释
复制
public class VoteManager {
    //持有状体处理对象
    private VoteState state = null;
    //记录用户投票的结果,Map<String,String>对应Map<用户名称,投票的选项>
    private Map<String,String> mapVote = new HashMap<String,String>();
    //记录用户投票次数,Map<String,Integer>对应Map<用户名称,投票的次数>
    private Map<String,Integer> mapVoteCount = new HashMap<String,Integer>();
    /**
     * 获取用户投票结果的Map
     */
    public Map<String, String> getMapVote() {
        return mapVote;
    }
    /**
     * 投票
     * @param user    投票人
     * @param voteItem    投票的选项
     */
    public void vote(String user,String voteItem){
        //1.为该用户增加投票次数
        //从记录中取出该用户已有的投票次数
        Integer oldVoteCount = mapVoteCount.get(user);
        if(oldVoteCount == null){
            oldVoteCount = 0;
        }
        oldVoteCount += 1;
        mapVoteCount.put(user, oldVoteCount);
        //2.判断该用户的投票类型,就相当于判断对应的状态
        //到底是正常投票、重复投票、恶意投票还是上黑名单的状态
        if(oldVoteCount == 1){
            state = new NormalVoteState();
        }
        else if(oldVoteCount > 1 && oldVoteCount < 5){
            state = new RepeatVoteState();
        }
        else if(oldVoteCount >= 5 && oldVoteCount <8){
            state = new SpiteVoteState();
        }
        else if(oldVoteCount > 8){
            state = new BlackVoteState();
        }
        //然后转调状态对象来进行相应的操作
        state.vote(user, voteItem, this);
    }
}
代码语言:txt
AI代码解释
复制
public class Client {

    public static void main(String[] args) {
        
        VoteManager vm = new VoteManager();
        for(int i=0;i<9;i++){
            vm.vote("u1","A");
        }
    }

}

结果:

总结

本项目的代码开源在了Github,大家随意使用:

https://github.com/qqxx6661/miaosha

最后,感谢大家的喜爱。

希望大家多多支持我的公主号:后端技术漫谈。

参考

关注我

我是一名后端开发工程师。

主要关注后端开发,数据安全物联网边缘计算方向,欢迎交流。

如果文章对你有帮助,不妨收藏,转发,在看起来~

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
【秒杀系统】从零开始打造简易秒杀系统(一):防止超卖
大家好,好久不发文章了。(快一个月了- -)最近有很多学习的新知识想和大家分享,但无奈最近项目蛮忙的,很多文章写了一半搁置在了笔记里,待以后慢慢补充发布。
蛮三刀酱
2020/03/07
1.3K1
【秒杀系统】从零开始打造简易秒杀系统(一):防止超卖
秒杀系统实战(五)| 如何优雅的实现订单异步处理
我回来啦,前段时间忙得不可开交。这段时间终于能喘口气了,继续把之前挖的坑填起来。写完上一篇秒杀系统(四):数据库与缓存双写一致性深入分析后,感觉文章深度一下子被我抬高了一些,现在构思新文章的时候,反而畏手畏脚,不敢随便写了。对于未来文章内容的想法,我写在了本文的末尾。
Rude3Knife的公众号
2020/07/14
3.8K0
秒杀系统实战(五)|  如何优雅的实现订单异步处理
【玩转腾讯云】秒杀系统实战 | 缓存与数据库双写一致性深度分析
        ———— 已经拥有黑眼圈,但还没学会小猪老师时间管理学的蛮三刀同学
蛮三刀酱
2020/04/25
3.7K4
【秒杀系统】零基础上手秒杀系统(二):令牌桶限流 + 再谈超卖
本文是秒杀系统的第二篇,通过实际代码讲解,帮助你快速的了解秒杀系统的关键点,上手实际项目。
蛮三刀酱
2020/03/19
1.9K0
【秒杀系统】零基础上手秒杀系统(二):令牌桶限流 + 再谈超卖
【秒杀系统】零基础上手秒杀系统(二):令牌桶限流 + 再谈超卖
本文是秒杀系统的第二篇,通过实际代码讲解,帮助你快速的了解秒杀系统的关键点,上手实际项目。
蛮三刀酱
2020/03/14
6870
手把手带你秒杀架构实践(含完整代码)
之前在 Java-Interview 中提到过秒杀架构的设计,这次基于其中的理论简单实现了一下。
java进阶架构师
2018/12/18
1.2K0
面霸篇:秒杀系统如何设计
高并发下如何设计秒杀系统?这是一个高频面试题。这个问题看似简单,但是里面的水很深,它考查的是高并发场景下,从前端到后端多方面的知识。
码哥字节
2021/08/23
1.2K1
面霸篇:秒杀系统如何设计
【秒杀系统】秒杀系统和拓展优化
框架技术: SpringBoot2.x ,Mybatis-plus ,Thymeleaf
冷环渊
2022/03/09
4.6K0
【秒杀系统】秒杀系统和拓展优化
Redis解决秒杀下单
上述就是实现最基本的优惠卷下单功能。当然真实的业务场景绝对不会是向我们这么简单的。
用户11097514
2024/05/30
1770
Redis解决秒杀下单
捣鼓一个电商功能设计
谷歌系统设计面试有一道题是关于如何设计秒杀架构,国外一位老哥给出了5种方法,下图是其中一种。
JavaSouth南哥
2024/10/16
1740
捣鼓一个电商功能设计
Redis解决秒杀微服务抢购代金券超卖和同一个用户多次抢购
之前的博客,我通过 传统的数据库方式实现秒杀按照正常逻辑来走,通过压力测试发现会有超卖合同一用户可以多次抢购同一代金券的问题。本文我将讲述通过redis来解决超卖和同一用户多次抢购问题。
共饮一杯无
2022/12/07
5940
Redis解决秒杀微服务抢购代金券超卖和同一个用户多次抢购
JAVA秒杀系统的简单实现(redis+rabbitmq)
csdn上教程一大堆,这里我就不多赘述了。需要注意的点是,如果使用的是阿里云服务器(centos 7),在安装完后一定要去阿里云服务器控制台添加安全规则,去开放你使用的对应端口号。 https://blog.csdn.net/CFrieman/article/details/83583085
IT大咖说
2020/12/29
3.2K0
JAVA秒杀系统的简单实现(redis+rabbitmq)
秒杀微服务实现抢购代金券功能
现在日常购物或者餐饮消费,商家经常会有推出代金券功能,有些时候代金券的数量不多是需要抢购的,那么怎么设计可以保证代金券的消耗量和秒杀到的用户保持一致呢?怎么设计可以保证一个用户只能秒杀到一张代金券呢?
共饮一杯无
2022/12/02
1.2K0
利用 Redis 实现分布式锁
对于这个问题,我们可以简单将锁分为两种——内存级锁以及分布式锁,内存级锁即我们在 Java 中的 synchronized 关键字(或许加上进程级锁修饰更恰当些),而分布式锁则是应用在分布式系统中的一种锁机制。分布式锁的应用场景举例以下几种:
烂猪皮
2020/11/25
6340
利用 Redis 实现分布式锁
秒杀系统架构解析:应对高并发的艺术
对于各大电商平台而言,爆款运营和促销活动的日常化已成为常态,而支撑这些的秒杀系统自然是不可或缺的一环。同时,秒杀活动的巨大流量就像一头洪荒之兽,若控制不当,可能会冲击整个交易体系。因此,秒杀系统在交易体系中便扮演着至关重要的角色。
ThoughtWorks
2024/07/04
8210
秒杀系统架构解析:应对高并发的艺术
超详细:如何设计出健壮的秒杀系统?
秒杀系统相信很多人见过,比如京东或者淘宝的秒杀,小米手机的秒杀,那么秒杀系统的后台是如何实现的呢?我们如何设计一个秒杀系统呢?对于秒杀系统应该考虑哪些问题?如何设计出健壮的秒杀系统?本期我们就来探讨一下这个问题
Java团长
2019/12/06
1.6K0
超详细:如何设计出健壮的秒杀系统?
如何设计一个秒杀系统
声明:本人并未参与过真正的秒杀系统设计,以下是本人学习笔记,自测通过,但可能并不完善,仅供参考,若用于生产出现问题,本人概不负责。
贪挽懒月
2020/08/11
4460
硬核讲解秒杀设计
裸奔秒杀 不加思考,上来直接按照 SpringBoot + MyBatis 模式进行秒杀系统的设计,流程如下:
sowhat1412
2022/09/20
8320
硬核讲解秒杀设计
秒杀架构的设计逐步提高性能达到并发秒杀的效果
之前在 JCSprout 中提到过秒杀架构的设计,这次基于其中的理论简单实现了一下。
爱明依
2022/04/01
2930
秒杀架构的设计逐步提高性能达到并发秒杀的效果
SpringCloud(十一)- 秒杀 抢购
Redis Incr 命令将 key 中储存的数字值增一。 如果 key 不存在,那么 key 的值会先被初始化为 0 ,然后再执行 INCR 操作。且将key的有效时间设置为长期有效 。
化羽羽
2022/12/01
1.1K0
SpringCloud(十一)- 秒杀 抢购
推荐阅读
相关推荐
【秒杀系统】从零开始打造简易秒杀系统(一):防止超卖
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档