首页
学习
活动
专区
圈层
工具
发布
社区首页 >专栏 >Mobile-LPR——面向移动端的准商业级车牌识别库

Mobile-LPR——面向移动端的准商业级车牌识别库

作者头像
CV君
发布2020-03-25 15:25:17
发布2020-03-25 15:25:17
2K0
举报
项目地址:

https://github.com/xiangweizeng/mobile-lpr

mobile-lpr

Mobile-LPR 是一个面向移动端的准商业级车牌识别库,以NCNN作为推理后端,使用DNN作为算法核心,支持多种车牌检测算法,支持车牌识别和车牌颜色识别。

特点

  • 超轻量,核心库只依赖NCNN,并且对模型量化进行支持
  • 多检测,支持SSD,MTCNN,LFFD等目标检测算法
  • 精度高,LFFD目标检测在CCPD检测AP达到98.9,车牌识别达到99.95%, 综合识别率超过99%
  • 易使用,只需要10行代码即可完成车牌识别
  • 易扩展,可快速扩展各类检测算法

算法流程

构建及安装

  1. 下载源码
代码语言:javascript
复制
git clone https://github.com/xiangweizeng/mobile-lpr.git
  1. 准备环境
  • 安装opencv4.0及以上, freetype库
  • 安装cmake3.0以上版本,支持c++11的c++编译器,如gcc-6.3
  1. 编译安装
代码语言:javascript
复制
mkdir build
cd build
cmake ..
make install

使用及样例

1.使用MTCNN检测

  • 代码样例
代码语言:javascript
复制
void test_mtcnn_plate(){
    pr::fix_mtcnn_detector("../../models/float", pr::mtcnn_float_detector);
    pr::PlateDetector detector = pr::IPlateDetector::create_plate_detector(pr::mtcnn_float_detector);

    pr::fix_lpr_recognizer("../../models/float", pr::float_lpr_recognizer);
    pr::LPRRecognizer lpr =  pr::float_lpr_recognizer.create_recognizer();
    Mat img = imread("../../image/plate.png");

    ncnn::Mat sample = ncnn::Mat::from_pixels(img.data, ncnn::Mat::PIXEL_BGR, img.cols, img.rows);
    std::vector<pr::PlateInfo> objects;
    detector->plate_detect(sample, objects);
    lpr->decode_plate_infos(objects);

    for (auto pi : objects)
    {
        cout << "plate_no: " << pi.plate_color << pi.plate_no << " box:" << pi.bbox.xmin << ","
        << pi.bbox.ymin << "," << pi.bbox.xmax << "," << pi.bbox.ymax << "," << pi.bbox.score << endl;
    }
}
  • 效果示例:

2.使用LFFD检测

  • 代码样例
代码语言:javascript
复制
void test_lffd_plate()
{
    pr::fix_lffd_detector("../../models/float", pr::lffd_float_detector);
    pr::PlateDetector detector = pr::IPlateDetector::create_plate_detector(pr::lffd_float_detector);

    pr::fix_lpr_recognizer("../../models/float", pr::float_lpr_recognizer);
    pr::LPRRecognizer lpr =  pr::float_lpr_recognizer.create_recognizer();
    Mat img = imread("../../image/plate.png");

    ncnn::Mat sample = ncnn::Mat::from_pixels(img.data, ncnn::Mat::PIXEL_BGR, img.cols, img.rows);
    std::vector<pr::PlateInfo> objects;
    detector->plate_detect(sample, objects);
    lpr->decode_plate_infos(objects);

    for (auto pi : objects)
    {
        cout << "plate_no: " << pi.plate_color << pi.plate_no << " box:" << pi.bbox.xmin << ","
             << pi.bbox.ymin << "," << pi.bbox.xmax << "," << pi.bbox.ymax << "," << pi.bbox.score << endl;
    }
}
  • 效果示例:

3.使用SSD检测

  • 代码样例
代码语言:javascript
复制
void test_ssd_plate()
{
    pr::fix_ssd_detector("../../models/float", pr::ssd_float_detector);
    pr::PlateDetector detector = pr::IPlateDetector::create_plate_detector(pr::ssd_float_detector);

    pr::fix_lpr_recognizer("../../models/float", pr::float_lpr_recognizer);
    pr::LPRRecognizer lpr =  pr::float_lpr_recognizer.create_recognizer();
    Mat img = imread("../../image/manys.jpeg");

    ncnn::Mat sample = ncnn::Mat::from_pixels(img.data, ncnn::Mat::PIXEL_BGR, img.cols, img.rows);
    std::vector<pr::PlateInfo> objects;
    detector->plate_detect(sample, objects);
    lpr->decode_plate_infos(objects);

    for (auto pi : objects)
    {
        cout << "plate_no: " << pi.plate_color << pi.plate_no << " box:" << pi.bbox.xmin << ","
             << pi.bbox.ymin << "," << pi.bbox.xmax << "," << pi.bbox.ymax << "," << pi.bbox.score << endl;
    }
}
  • 效果示例:

4.使用量化模型

  • 代码样例
代码语言:javascript
复制
void test_quantize_mtcnn_plate(){
    pr::fix_mtcnn_detector("../../models/quantize", pr::mtcnn_int8_detector);
    pr::PlateDetector detector = pr::IPlateDetector::create_plate_detector(pr::mtcnn_int8_detector);

    pr::fix_lpr_recognizer("../../models/quantize", pr::int8_lpr_recognizer);
    pr::LPRRecognizer lpr =  pr::int8_lpr_recognizer.create_recognizer();
    Mat img = imread("../../image/plate.png");

    ncnn::Mat sample = ncnn::Mat::from_pixels(img.data, ncnn::Mat::PIXEL_BGR, img.cols, img.rows);
    std::vector<pr::PlateInfo> objects;
    detector->plate_detect(sample, objects);
    lpr->decode_plate_infos(objects);

    for (auto pi : objects)
    {
        cout << "plate_no: " << pi.plate_color << pi.plate_no << " box:" << pi.bbox.xmin << ","
             << pi.bbox.ymin << "," << pi.bbox.xmax << "," << pi.bbox.ymax << "," << pi.bbox.score << endl;
    }
}
  • 效果示例:

后续工作

  • 添加更优的算法支持
  • 优化模型,支持更多的车牌类型,目前支持普通车牌识别,欢迎各位大神提供更好的模型
  • 优化模型,更高的精度
  • 添加Android 使用实例
  • 性能评估

参考

  1. light-LPR 本项目的模型大部分来自与此:https://github.com/lqian/light-LPR
  2. NCNN 使用NCNN作为后端推理:https://github.com/Tencent/ncnn
  3. LFFD LFFD的模型及实现:https://github.com/YonghaoHe/A-Light-and-Fast-Face-Detector-for-Edge-Devices
  4. CCPD 中国车牌数据集,达到200万样本:https://github.com/detectRecog/CCPD
  5. HyperLPR 一个开源的车牌识别框架:https://github.com/zeusees/HyperLPR
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-03-23,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 我爱计算机视觉 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 特点
  • 后续工作
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档