前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Self Attention 自注意力机制

Self Attention 自注意力机制

作者头像
Steve Wang
发布于 2020-03-18 09:23:35
发布于 2020-03-18 09:23:35
12.4K0
举报
文章被收录于专栏:从流域到海域从流域到海域

self attention是提出Transformer的论文《Attention is all you need》中提出的一种新的注意力机制,这篇博文仅聚焦于self attention,不谈transformer的其他机制。Self attention直观上与传统Seq2Seq attention机制的区别在于,它的query和massage两个序列是相等的。大家可能都以为self attention是attention的改进版,但其实self attention的设计思想来自RNN和CNN,希望这篇博文能对你有所启发。

广义注意力机制

在谈论self attention之前我们首先认识一下以KQV模型来解释的Attention机制。

假定输入为Q(Query), Memory中以键值对(K,V)形式存储上下文。那么注意力机制其实是Query到一系列键值对(Key, Value)上的映射函数。

Attention Value=QKTVAttention \ Value = QK^TVAttention Value=QKTV

Attention本质上是为序列中每个元素都分配一个权重系数,这也可以理解为软寻址。如果序列中每一个元素都以(K,V)形式存储,那么attention则通过计算Q和K的相似度来完成寻址。Q和K计算出来的相似度反映了取出来的V值的重要程度,即权重,然后加权求和就得到了attention值。

Self Attention

Self Attention机制在KQV模型中的特殊点在于Q=K=V,这也是为什么取名self attention,因为其是文本和文本自己求相似度再和文本本身相乘计算得来。

Attention(Q,K,V)=softmax(QKTdk)VAttention(Q,K,V)=softmax(\frac{QK^T}{\sqrt d_k})VAttention(Q,K,V)=softmax(d​k​QKT​)V

Self Attention机制的优越之处

抖音算法面试题,Self Attention和Seq2Seq Attention相比,优越在哪里。

RNN本身对于长距离的依赖关系有一定的捕捉能力,但由于序列模型是通过门控单元使得信息保持流动,并且选择性地传递信息。但这种方式在文本长度越来越长的条件下,捕捉依赖关系的能力越来越低,因为每一次递归都伴随着信息的损耗,所以有了Attention机制来增强对我们所关注的那部分依赖关系的捕捉。除此之外,序列模型也不能对层次结构的信息进行有效的表达

Attention(包括self attention在内)本身的优点(相较于RNN而言):

  • 对长期依赖关系有着更强的捕捉能力
  • 可以并行计算

CNN在NLP领域也有比较广泛的应用。CNN模型可以被看作n-gram的detector,n-gram的n对应CNN卷积核的大小。CNN基于的假设是局部信息存在相互依赖关系,而卷积核可以把这些依赖关系以类似于n-gram的形式提取出来。另外,CNN具备Hierachicial Receptive Filed,使得任意两个位置之间的长度距离是对数级别。

Self-Attention的优点(相较于CNN而言):

  • 元素与元素之间的距离从CNN的logarithmic path length进一步缩短到constant path length
  • 由CNN fixed size perceptive变成了variable-sized的 perceptive,具体的长度等于文本长度,这也是self-attention相对于普通attention的优点。

图片中的文字讲的是self-attention和卷积的区别,不能看作是优点。从图中能看出self-attention和卷积的关联之处

如果普通attention机制在一个窗口下计算attention score,正如我这篇博文介绍的attention机制,那么这种attention机制的感受野就只有窗口,而且随着窗口移动还需要计算多次。

所以self-attention相较于Seq2Seq attention还有另一个优点:

  • 一步矩阵计算得到了文本序列中任意两个元素的相似度,而且是以整个文本作为观察范围的。

再类比于CNN的multi-kernel,实现self-attention的时候也可以有多份的self-attention score,这产生了multi-head self attention。

Self-Attention归纳如下

Self-attention的优点归纳为以下:

Transformer里面一共有三种self-attetnion:

三种Self-attention的区别:

参考文献

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 广义注意力机制
  • Self Attention
  • Self Attention机制的优越之处
  • Self-Attention归纳如下:
  • Self-attention的优点归纳为以下:
  • 参考文献
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档