前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【flink training】 打车热点区域实时统计PopularPlaces

【flink training】 打车热点区域实时统计PopularPlaces

作者头像
sanmutongzi
发布2020-03-04 15:59:58
8690
发布2020-03-04 15:59:58
举报
文章被收录于专栏:stream process

http://training.data-artisans.com/是Apache Flink商业公司DataArtisans提供的一个flink学习平台,主要提供了一些业务场景和flink api结合的case。本文摘取其中一个计算出租车上/下客人热点区域demo进行分析。

一 数据准备

flink-traing的大部分例子是以New York City Taxi & Limousine Commission 提供的一份历史数据集作为练习数据源,其中最常用一种类型为taxi ride的事件定义为

代码语言:javascript
复制
rideId         : Long      // a unique id for each ride
taxiId         : Long      // a unique id for each taxi
driverId       : Long      // a unique id for each driver
isStart        : Boolean   // TRUE for ride start events, FALSE for ride end events
startTime      : DateTime  // the start time of a ride
endTime        : DateTime  // the end time of a ride,
                           //   "1970-01-01 00:00:00" for start events
startLon       : Float     // the longitude of the ride start location
startLat       : Float     // the latitude of the ride start location
endLon         : Float     // the longitude of the ride end location
endLat         : Float     // the latitude of the ride end location
passengerCnt   : Short     // number of passengers on the ride

下载数据集

wget http://training.data-artisans.com/trainingData/nycTaxiRides.gz

将数据源转化为flink stream source数据

代码语言:javascript
复制
// get an ExecutionEnvironment
StreamExecutionEnvironment env =
  StreamExecutionEnvironment.getExecutionEnvironment();
// configure event-time processing
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

// get the taxi ride data stream
DataStream<TaxiRide> rides = env.addSource(
  new TaxiRideSource("/path/to/nycTaxiRides.gz", maxDelay, servingSpeed));

二 坐标分格

如下图所示,程序将整个城市坐标由西北向东南划分为大约250X400个单位的单元格

三 根据单元格计算坐标值

基础坐标数据

代码语言:javascript
复制
    // geo boundaries of the area of NYC
    public static double LON_EAST = -73.7;
    public static double LON_WEST = -74.05;
    public static double LAT_NORTH = 41.0;
    public static double LAT_SOUTH = 40.5;

    // area width and height
    public static double LON_WIDTH = 74.05 - 73.7;
    public static double LAT_HEIGHT = 41.0 - 40.5;

    // delta step to create artificial grid overlay of NYC
    public static double DELTA_LON = 0.0014;
    public static double DELTA_LAT = 0.00125;

    // ( |LON_WEST| - |LON_EAST| ) / DELTA_LON
    public static int NUMBER_OF_GRID_X = 250;
    // ( LAT_NORTH - LAT_SOUTH ) / DELTA_LAT
    public static int NUMBER_OF_GRID_Y = 400;

根据经纬度计算单元格唯一id

代码语言:javascript
复制
    public static int mapToGridCell(float lon, float lat) {
        int xIndex = (int)Math.floor((Math.abs(LON_WEST) - Math.abs(lon)) / DELTA_LON);
        int yIndex = (int)Math.floor((LAT_NORTH - lat) / DELTA_LAT);

        return xIndex + (yIndex * NUMBER_OF_GRID_X);
    }

四 程序实现

将坐标映射到gridId之后剩下的就是采用窗口统计单位时间内event事件超过一定阈值的grid。

代码语言:javascript
复制
// find popular places
        DataStream<Tuple5<Float, Float, Long, Boolean, Integer>> popularSpots = rides
                // remove all rides which are not within NYC
                .filter(new RideCleansing.NYCFilter())
                // match ride to grid cell and event type (start or end)
                .map(new GridCellMatcher())
                // partition by cell id and event type
                .<KeyedStream<Tuple2<Integer, Boolean>, Tuple2<Integer, Boolean>>>keyBy(0, 1)
                // build sliding window
                .timeWindow(Time.minutes(15), Time.minutes(5))
                // count ride events in window
                .apply(new RideCounter())
                // filter by popularity threshold
                .filter((Tuple4<Integer, Long, Boolean, Integer> count) -> (count.f3 >= popThreshold))
                // map grid cell to coordinates
                .map(new GridToCoordinates());

        // print result on stdout
        popularSpots.print();

上述flink job在统计完热点区域后又将gridId映射回每个单元格的中心点经纬度,具体实现为:

代码语言:javascript
复制
    /**
     * Maps the grid cell id back to longitude and latitude coordinates.
     */
    public static class GridToCoordinates implements
            MapFunction<Tuple4<Integer, Long, Boolean, Integer>, Tuple5<Float, Float, Long, Boolean, Integer>> {

        @Override
        public Tuple5<Float, Float, Long, Boolean, Integer> map(
                Tuple4<Integer, Long, Boolean, Integer> cellCount) throws Exception {

            return new Tuple5<>(
                    GeoUtils.getGridCellCenterLon(cellCount.f0),
                    GeoUtils.getGridCellCenterLat(cellCount.f0),
                    cellCount.f1,
                    cellCount.f2,
                    cellCount.f3);
        }
    }


    /**
     * Returns the longitude of the center of a grid cell.
     *
     * @param gridCellId The grid cell.
     *
     * @return The longitude value of the cell's center.
     */
    public static float getGridCellCenterLon(int gridCellId) {

        int xIndex = gridCellId % NUMBER_OF_GRID_X;

        return (float)(Math.abs(LON_WEST) - (xIndex * DELTA_LON) - (DELTA_LON / 2)) * -1.0f;
    }

    /**
     * Returns the latitude of the center of a grid cell.
     *
     * @param gridCellId The grid cell.
     *
     * @return The latitude value of the cell's center.
     */
    public static float getGridCellCenterLat(int gridCellId) {

        int xIndex = gridCellId % NUMBER_OF_GRID_X;
        int yIndex = (gridCellId - xIndex) / NUMBER_OF_GRID_X;

        return (float)(LAT_NORTH - (yIndex * DELTA_LAT) - (DELTA_LAT / 2));

    }

结论: 综上所示,通过单元格划分,flink程序可以方便的解决实时统计热点地理区域这一类问题。

代码地址:https://github.com/dataArtisans/flink-training-exercises/blob/master/src/main/java/com/dataartisans/flinktraining/exercises/datastream_java/windows/PopularPlaces.java

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018-06-26 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
大数据
全栈大数据产品,面向海量数据场景,帮助您 “智理无数,心中有数”!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档