前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >对比Excel,学习pandas数据透视表

对比Excel,学习pandas数据透视表

作者头像
朱小五
发布2020-02-24 16:57:12
1.6K0
发布2020-02-24 16:57:12
举报
文章被收录于专栏:凹凸玩数据

Excel中做数据透视表

① 选中整个数据源;

② 依次点击“插入”—“数据透视表”

③ 选择在Excel中的哪个位置,插入数据透视表

④ 然后根据实际需求,从不同维度展示结果

⑤ 结果如下

pandas用pivot_table()做数据透视表

1)语法格式

代码语言:javascript
复制
pd.pivot_table(data,index=None,columns=None,
               values=None,aggfunc='mean',
               margins=False,margins_name='All',
               dropna=True,fill_value=None)

2)对比excel,说明上述参数的具体含义

参数说明:

  • data 相当于Excel中的"选中数据源";
  • index 相当于上述"数据透视表字段"中的行;
  • columns 相当于上述"数据透视表字段"中的列;
  • values 相当于上述"数据透视表字段"中的值;
  • aggfunc 相当于上述"结果"中的计算类型;
  • margins 相当于上述"结果"中的总计;
  • margins_name 相当于修改"总计"名,为其它名称;

下面几个参数,用的较少,记住干嘛的,等以后需要就百度。

  • dropna 表示是否删除缺失值,如果为True时,则把一整行全作为缺失值删除;
  • fill_value 表示将缺失值,用某个指定值填充。

案例说明

1)求出不同品牌下,每个月份的销售数量之和

① 在Excel中的操作结果如下

② 在pandas中的操作如下

代码语言:javascript
复制
df = pd.read_excel(r"C:\Users\黄伟\Desktop\pivot_table.xlsx")
display(df.sample(5))

df.insert(1,"月份",df["销售日期"].apply(lambda x:x.month))
display(df.sample(5))

df1 = pd.pivot_table(df,index="品牌",columns="月份",
                     values="销售数量",aggfunc=np.sum)
display(df1)

结果如下:

2)求出不同品牌下,每个地区、每个月份的销售数量之和

① 在Excel中的操作结果如下

② 在pandas中的操作如下

代码语言:javascript
复制
df = pd.read_excel(r"C:\Users\黄伟\Desktop\pivot_table.xlsx")
display(df.sample(5))

df.insert(1,"月份",df["销售日期"].apply(lambda x:x.month))
display(df.sample(5))

df1 = pd.pivot_table(df,index="品牌",columns=["销售区域","月份"],
                     values="销售数量",aggfunc=np.sum)
display(df1)

结果如下:

3)求出不同品牌不同地区下,每个月份的销售数量之和

① 在Excel中的操作结果如下

② 在pandas中的操作如下

代码语言:javascript
复制
df = pd.read_excel(r"C:\Users\黄伟\Desktop\pivot_table.xlsx")
display(df.sample(5))

df.insert(1,"月份",df["销售日期"].apply(lambda x:x.month))
display(df.sample(5))

df1 = pd.pivot_table(df,index=["品牌","销售区域"],columns="月份",
                     values="销售数量",aggfunc=np.sum)
display(df1)

结果如下:

4)求出不同品牌下的“销售数量之和”与“货号计数”

① 在Excel中的操作结果如下

② 在pandas中的操作如下

代码语言:javascript
复制
df = pd.read_excel(r"C:\Users\黄伟\Desktop\pivot_table.xlsx")
display(df.sample(5))

df.insert(1,"月份",df["销售日期"].apply(lambda x:x.month))
display(df.sample(5))

df1 = pd.pivot_table(df,index="品牌",columns="月份",
                     values=["销售数量","货号"],
                     aggfunc={"销售数量":"sum","货号":"count"},
                     margins=True,margins_name="总计")
display(df1)

结果如下:

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-02-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 凹凸数据 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Excel中做数据透视表
  • pandas用pivot_table()做数据透视表
  • 案例说明
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档