论文提出anchor-free和proposal-free的one-stage的目标检测算法FCOS,不再需要anchor相关的的超参数,在目前流行的逐像素(per-pixel)预测方法上进行目标检测,根据实验结果来看,FCOS能够与主流的检测算法相比较,达到SOTA,为后面的大热的anchor-free方法提供了很好的参考
来源:【晓飞的算法工程笔记】 公众号
论文: FCOS: Fully Convolutional One-Stage Object Detection
大多目标检测网络都是anchor-based,虽然anchor能带来很大的准确率提升,但也会带来一些缺点:
近期,FCNs在各视觉任务中都有不错的表现,但目标检测由于anchor的存在,不能进行纯逐像素预测,于是论文抛弃anchor,提出逐像素全卷积目标检测网络FCOS网络,总结如下:
让$F_i\in \mathbb{R}^{H\times W\times C}$为层$i$的特征图,$s$为层的总stride,输入的GT为${B_i}$,$B_i=(x_0^{(i)},y_0^{(i)},x_1^{(i)},y_1^{(i)},c^{(i)})\in \mathbb{R}^4\times {1,2...C }$分别为box的左上角和右下角坐标以及类别,$C$为类别数。特征图$F_i$的每个位置$(x,y)$,可以通过$(\lfloor\frac{s}{2}\rfloor + xs, \lfloor\frac{s}{2}\rfloor + ys)$映射回原图,FCOS直接预测相对于当前像素的box位置,而不是anchor的那样将像素作为中心再回归
当像素$(x,y)$落在GT中则认为是正样本,将类别$c^$设置为目标类别,否则设置为0。除了类别,还有4D向量$t^=(l^,t^,r^,b^)$作为回归目标,分别为box的四条边与像素的距离。当像素落在多个GT中时,直接选择区域最小的作为回归目标。相对于anchor-based的IOU判断,FCOS能生成更多的正样本来训练回归器
$L{cls}$为focal loss,$L{reg}$为UnitBox中的IOU loss,$N_{pos}$为正样本数,$\lambda$为平衡权重,公式2计算特征图上的所有结果
下面讲下FCOS如何使用FPN来解决之前提到的问题:
如图2,FPN使用${P_3,P_4,P_5,P_6,P_7 }$层特征,其中$P_3$、$P_4$和$P_5$分别通过$C_3$、$C_4$和$C_5$的$1\times 1$卷积以及top-down connection生成,$P_6$和$P_7$则是分别通过$P_5$和$P_6$进行stride为2的$1\times1$卷积生成,各特征的stride分别为8,16,32,64和128
anchor-based方法对不同的层使用不同的大小,论文则直接限制每层的bbox回归范围。首先计算$l^$,$t^$,$r^$和$b^$,如果满足$max(l^,t^,r^8,b^)>m_i$或$max(l^,t^,r^8,b^)<m_{i-1}$,则设为负样本,不需要进行bbox回归。$m$为层$i$的最大回归距离,$m_2$,$m_3$,$m_4$,$m_5$,$m_6$和$m_7$分别为0,64,128,256,512和$\infty$。如果在这样设置下,像素仍存在歧义,则选择区域最小的作为回归目标,从实验来看,这样设定的结果很好
最后,不同层间共享head,不仅减少参数,还能提高准确率。而由于不同的层负责不同的尺寸,所以不应该使用相同的head,因此,论文将$exp(x)$改为$exp(s_ix)$,添加可训练的标量$s_i$来自动调整不同层的指数基底
使用FPN后,FCOS与anchor-based detector仍然存在差距,主要来源于低质量的预测box,这些box的大多由距离目标中心点相当远的像素产生。因此,论文提出新的独立分支来预测像素的center-ness,用来评估像素与目标中心点的距离
center-ness的gt计算如公式3,取值$(0,1]$,使用二值交叉熵进行训练。在测试时,最终的分数是将分类分数与center-ness进行加权,低质量的box分数会降低,最后可能通过NMS进行过滤
center-ness的另一种形式是在训练时仅用目标框的中心区域像素作为正样本,这会带来额外的超参数,目前已经验证性能会更好
best possible recall(BPR)定义为检测器能够回归的gt比例,如果gt被赋予某个预测结果,即为能够回归。从表1看来,不用FPN的FCOS直接有95.55%,而anchor-based的经典实现只有86.82%,加上FPN后就提高到98.40%
在原始FCOS中,正样本中歧义目标的比例为23.16%,使用FPN后能够降低到7.14%。这里论文提到,同类别目标的歧义是没关系的,因为不管预测为哪个目标,都是正确的,预测漏的目标可以由其它更靠近他的像素来预测。所以,只考虑不同类别的歧义比例大概为17.84%,使用FPN后可降为3.75%。而在最终结果中,仅2.3%的框来自于歧义像素,考虑不同类别的歧义,则仅有1.5%的,所以歧义不是FCN-based FCOS的问题
center-ness分支能够将AP从33.5%升为37.1%,比直接从回归结果中计算的方式要好
相对于RetinaNet,之前FCOS使用了分组卷积(GN)和使用$P_5$来产生$P_6$和$P_7$,为了对比,去掉以上的改进进行实验,发现准确率依旧比anchor-based要好
将anchor-based的RPNs with FPN替换成FCOS,能够显著提高$AR^{100}$和$AR^{1k}$
论文提出anchor-free和proposal-free的one-stage的目标检测算法FCOS,不再需要anchor相关的的超参数,在目前流行的逐像素(per-pixel)预测方法上进行目标检测,根据实验结果来看,FCOS能够与主流的检测算法相比较,达到SOTA,为后面的大热的anchor-free方法提供了很好的参考
如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。