首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >特征锦囊:如何根据变量相关性画出热力图?

特征锦囊:如何根据变量相关性画出热力图?

作者头像
Sam Gor
发布2020-02-17 13:27:01
发布2020-02-17 13:27:01
2.1K00
代码可运行
举报
文章被收录于专栏:SAMshareSAMshare
运行总次数:0
代码可运行

今日锦囊

特征锦囊:如何根据变量相关性画出热力图?

上次的锦囊有提及到如何使用sklearn来实现多项式的扩展来衍生更多的变量,但是我们也知道其实这样子出来的变量之间的相关性是很强的,我们怎么可以可视化一下呢?这里介绍一个热力图的方式,调用corr来实现变量相关性的计算,同时热力图,颜色越深的话,代表相关性越强!

代码语言:javascript
代码运行次数:0
运行
复制
# 人体胸部加速度数据集,标签activity的数值为1-7
'''
1-在电脑前工作
2-站立、走路和上下楼梯
3-站立
4-走路
5-上下楼梯
6-与人边走边聊
7-站立着说话

'''
import pandas as pd
from sklearn.preprocessing import PolynomialFeatures

df = pd.read_csv('./data/activity_recognizer/1.csv', header=None)
df.columns = ['index','x','y','z','activity']

x = df[['x','y','z']]
y = df['activity']

# 多项式扩充数值变量
poly = PolynomialFeatures(degree=2, include_bias=False, interaction_only=False)

x_poly = poly.fit_transform(x)
pd.DataFrame(x_poly, columns=poly.get_feature_names()).head()

# 查看热力图(颜色越深代表相关性越强)
%matplotlib inline
import seaborn as sns

sns.heatmap(pd.DataFrame(x_poly, columns=poly.get_feature_names()).corr())

大家对今天的知识,有什么疑问吗?欢迎进行留言咨询哈~

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-01-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 SAMshare 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 今日锦囊
    • 特征锦囊:如何根据变量相关性画出热力图?
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档