前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >BMVC18|无监督深度关联学习大幅提高行人重识别性能(附Github地址)

BMVC18|无监督深度关联学习大幅提高行人重识别性能(附Github地址)

作者头像
CV君
发布2019-12-27 15:01:57
7150
发布2019-12-27 15:01:57
举报
文章被收录于专栏:我爱计算机视觉

本文选自BMVC2018的论文《Deep Association Learning for Unsupervised Video Person Re-identification》,使用无监督学习解决行人重识别的问题,更加贴近行人重识别的应用场景,同时性能也大幅提升。

作者信息:

深度学习方法已开始主导基于视频的行人重识别(re-id)研究。但是现有方法主要考虑监督学习,需要手工标注大量的不同画面的成对数据。因此,它们在现实世界的视频监控应用中缺乏可扩展性和实用性。

(上图来自本文第二作者所在公司Vision Semantics Ltd官网)

为了解决视频行人重识别任务,本文作者发明了一种新的深度关联学习(Deep Association Learning,DAL)方法,这是第一种在模型初始化和训练中不使用任何身份标签的端到端深度学习方法。 DAL通过以端到端方式联合优化两个基于间隔的关联损失来学习深度重新匹配模型,这有效地限制了每个帧与最佳匹配的同一摄像机表示和跨摄像机表示的关联。 实验结果表明,DAL算法在三个基准测试(PRID 2011,iLIDS-VID和MARS)中显著优于当前最先进的无监督视频行人重识别方法。

作者认为,在视频序列中,含有同一个人的并有视点、遮挡、姿态等变化的一小段视频帧(作者称之为tracklets)本身就是可以利用的信息源,在不加入其他人工标注的情况下,可以用来训练用于行人重识别的神经网络。 如下图:

三个行人重识别数据库(PRID 2011,iLIDS-VID和MARS)上的tracklets示例:

在上述数据上利用视频中两种数据一致性(Local Space-Time Consistency 与 Global Cyclic Ranking Consistency)进行关联学习。

深度关联学习(Deep Association Learning)示意图:

包括同摄像头内部关联学习与跨摄像头的关联学习。

在三个行人重识别数据库中相比其他无监督学习方法,性能取得了大幅提升。

代码地址: https://github.com/yanbeic/Deep-Association-Learning

代码是MIT协议。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-08-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 我爱计算机视觉 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
数据库
云数据库为企业提供了完善的关系型数据库、非关系型数据库、分析型数据库和数据库生态工具。您可以通过产品选择和组合搭建,轻松实现高可靠、高可用性、高性能等数据库需求。云数据库服务也可大幅减少您的运维工作量,更专注于业务发展,让企业一站式享受数据上云及分布式架构的技术红利!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档