前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >常见的数据结构

常见的数据结构

作者头像
分母为零
发布2019-12-04 12:15:57
8730
发布2019-12-04 12:15:57
举报
文章被收录于专栏:分母为零

线性表

线性表是最常用且最简单的一种数据结构,它是n个数据元素的有限序列。

实现线性表的方式一般有两种,一种是使用数组存储线性表的元素,即用一组连续的存储单元依次存储线性表的数据元素。另一种是使用链表存储线性表的元素,即用一组任意的存储单元存储线性表的数据元素。

数组

数组是一种大小固定的数据结构,连续的内存空间和数据类型。数组实现的线性表优点在于可以通过下标来访问或者修改元素,比较高效,主要缺点在于插入和删除的花费开销较大,比如当在第一个位置前插入一个元素,那么首先要把所有的元素往后移动一个位置。

链表

链表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列节点组成,这些节点不必在内存中相连。每个节点由数据部分Data和链部分Next,Next指向下一个节点,这样当添加或者删除时,只需要改变相关节点的Next的指向,效率很高。

链表的实现还有其它的方式,常见的有循环单链表,双向链表,循环双向链表。循环单链表 主要是链表的最后一个节点指向第一个节点,整体构成一个链环。双向链表 主要是节点中包含两个指针部分,一个指向前驱元,一个指向后继元,JDK中LinkedList集合类的实现就是双向链表。循环双向链表是最后一个节点指向第一个节点。

栈与队列

栈和队列也是比较常见的数据结构,它们是比较特殊的线性表,因为对于栈来说,访问、插入和删除元素只能在栈顶进行,对于队列来说,元素只能从队列尾插入,从队列头访问和删除。

栈是限制插入和删除只能在一个位置上进行的表,该位置是表的末端,叫作栈顶,对栈的基本操作有push(进栈)和pop(出栈),前者相当于插入,后者相当于删除最后一个元素。栈有时又叫作LIFO(Last In First Out)表,即后进先出。

应用场景:函数调用栈、表达式求值、括号匹配。

队列

队列是一种特殊的线性表,特殊之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作,和栈一样,队列是一种操作受限制的线性表。进行插入操作的端称为队尾,进行删除操作的端称为队头。

应用场景:

  • 阻塞队列:生产者和消费者模型
  • 并发队列:利用CAS实现高效的并发队列。

树与二叉树

树型结构是一类非常重要的非线性数据结构,其中以树和二叉树最为常用。

树 是由n(n>=1)个有限节点组成一个具有层次关系的集合。它具有以下特点:每个节点有零个或多个子节点;没有父节点的节点称为 根 节点;每一个非根节点有且只有一个 父节点 。

二叉树

二叉树的每个结点至多只有2棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。

二叉树的第i层至多有2^(i-1)个结点;深度为k的二叉树至多有2^k-1个结点。

一棵深度为k,且有2^k-1个节点的二叉树称之为 满二叉树。

深度为k,有n个节点的二叉树,当且仅当其每一个节点都与深度为k的满二叉树中,序号为1至n的节点对应时,称之为完全二叉树。

三种遍历方法

(1) 先序遍历 若二叉树为空,则空操作,否则先访问根节点,再先序遍历左子树,最后先序遍历右子树。(2) 中序遍历 若二叉树为空,则空操作,否则先中序遍历左子树,再访问根节点,最后中序遍历右子树。(3) 后序遍历 若二叉树为空,则空操作,否则先后序遍历左子树节点,再后序遍历右子树,最后访问根节点。

二叉查找树

二叉查找树就是二叉排序树,也叫二叉搜索树。二叉查找树或者是一棵空树,或者是具有下列性质的二叉树:(1) 若左子树不空,则左子树上所有结点的值均小于它的根结点的值;(2) 若右子树不空,则右子树上所有结点的值均大于它的根结点的值;(3) 左、右子树也分别为二叉排序树;(4) 没有键值相等的结点。

平衡二叉树

平衡二叉树又称AVL树,它或者是一棵空树,或者是具有下列性质的二叉树:它的左子树和右子树都是平衡二叉树,且左子树和右子树的深度之差的绝对值不超过1。

查找、插入和删除在平均和最坏情况下都是O(log n)。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。

红黑树

红黑树是平衡二叉树的一种,它保证在最坏情况下基本动态集合操作的事件复杂度为O(log n)。红黑树和平衡二叉树区别如下:(1) 红黑树放弃了追求完全平衡,追求大致平衡,在与平衡二叉树的时间复杂度相差不大的情况下,保证每次插入最多只需要三次旋转就能达到平衡,实现起来也更为简单。(2) 平衡二叉树追求绝对平衡,条件比较苛刻,实现起来比较麻烦,每次插入新节点之后需要旋转的次数不能预知。

B树

多路查找树(multi-way search tree),其每一个结点的孩子数可以多于两个,且每一个结点处可以存储多个元素。 B树是一种平衡的多路查找树,结点最大的孩子数目称为B树的阶(Order)。

B+树

B+树在B树的基础上做了改进,在B+树中,出现在分支结点中的元素会被当作它们在该分支结点位置的中序后继者(叶子结点)中再次列出,且每一个叶子结点都会保存一个指向后一叶子结点的指针。

B树与B+树对比

B树的优点在于数据存储在每个结点中,可以更快访问到,而不必须走到叶子结点,B树更多的用在文件系统中。B+树的每个非叶子结点都只充当索引,所以查询必须到叶子结点结束,但它十分适合“扫库”和区间查找,而且因为大多结点只用于索引,所以并不会存储真正的数据,在内存上会更紧凑,相同的内存就可以存放更多的索引数据了。B+树的这些特性使得它更适合用来做数据库的索引。

图是一种较线性表和树更为复杂的数据结构,在线性表中,数据元素之间仅有线性关系,在树形结构中,数据元素之间有着明显的层次关系,而在图形结构中,节点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。图的应用相当广泛,特别是近年来的迅速发展,已经渗入到诸如语言学、逻辑学、物理、化学、电讯工程、计算机科学以及数学的其他分支中。

堆(Heap)

堆就是用数组实现的二叉树,所有它没有使用父指针或者子指针。堆根据“堆属性”来排序,“堆属性”决定了树中节点的位置。

堆分为两种:最大堆和最小堆,两者的差别在于节点的排序方式。

在最大堆中,父节点的值比每一个子节点的值都要大。在最小堆中,父节点的值比每一个子节点的值都要小。这就是所谓的“堆属性”,并且这个属性对堆中的每一个节点都成立。

散列表

用一个与集合规模差不多大的数组来存储这个集合,将数据元素的关键字映射到数组的下标,这个映射称为“散列函数”,数组称为“散列表”。查找时,根据被查找的关键字找到存储数据元素的地址,从而获取数据元素。

散列函数

在散列表中。插入、删除和查找都会用到散列函数。散列函数的计算速度直接影响散列表的性能。好的散列函数的一个标准就是:计算速度快。另一点就是:结点的散列地址尽可能均匀。使得冲突的机会尽可能少。

常用的散列函数包括直接定址法、保留余数法、数字分析法、平方取中法和折叠法等。

碰撞的解决

开放定址法来处理哈希冲突:核心思想就是,如果出现了散列冲突,我们就重新探测一个空闲位置,将其插入。

拉链法处理哈希冲突:在散列表中,每个桶(bucket)或者槽(slot)会对应一条链表,所有散列值相同的元素会放到相同槽位对应的链表中。

位图

位图法就是bitmap的缩写。所谓bitmap,就是用每一位来存放某种状态,适用于大规模数据,但数据状态又不是很多的情况。通常是用来判断某个数据存不存在的。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-11-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 分母为零 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 线性表
    • 数组
      • 链表
      • 栈与队列
      • 队列
        • 树与二叉树
          • 三种遍历方法
      • 二叉树
      • 二叉查找树
      • 平衡二叉树
      • 红黑树
      • B树
      • B+树
          • 堆(Heap)
            • 散列表
            • 散列函数
            • 碰撞的解决
              • 位图
              相关产品与服务
              数据保险箱
              数据保险箱(Cloud Data Coffer Service,CDCS)为您提供更高安全系数的企业核心数据存储服务。您可以通过自定义过期天数的方法删除数据,避免误删带来的损害,还可以将数据跨地域存储,防止一些不可抗因素导致的数据丢失。数据保险箱支持通过控制台、API 等多样化方式快速简单接入,实现海量数据的存储管理。您可以使用数据保险箱对文件数据进行上传、下载,最终实现数据的安全存储和提取。
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档