前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >一文读懂自注意力机制:8大步骤图解+代码

一文读懂自注意力机制:8大步骤图解+代码

作者头像
代码医生工作室
发布2019-11-29 13:01:33
6.1K2
发布2019-11-29 13:01:33
举报
文章被收录于专栏:相约机器人
新智元报道

来源:towardsdatascience

作者:Raimi Karim 编辑:肖琴

【新智元导读】NLP领域最近的快速进展离不开基于Transformer的架构,本文以图解+代码的形式,带领读者完全理解self-attention机制及其背后的数学原理,并扩展到Transformer。

BERT, RoBERTa, ALBERT, SpanBERT, DistilBERT, SesameBERT, SemBERT, MobileBERT, TinyBERT, CamemBERT……它们有什么共同之处呢?答案不是“它们都是BERT”?。

正确答案是:self-attention?。

我们讨论的不仅是名为“BERT”的架构,更准确地说是基于Transformer的架构。基于Transformer的架构主要用于建模语言理解任务,它避免了在神经网络中使用递归,而是完全依赖于self-attention机制来绘制输入和输出之间的全局依赖关系。但这背后的数学原理是什么呢?

这就是本文要讲的内容。这篇文章将带你通过一个self-attention模块了解其中涉及的数学运算。读完本文,你将能够从头开始写一个self-attention模块。

让我们开始吧!

完全图解——8步掌握self-attention

self-attention是什么?

如果你认为self-attention与attention有相似之处,那么答案是肯定的!它们基本上共享相同的概念和许多常见的数学运算。

一个self-attention模块接收n个输入,然后返回n个输出。这个模块中发生了什么呢?用外行人的话说,self-attention机制允许输入与输入之间彼此交互(“self”),并找出它们应该更多关注的对象(“attention”)。输出是这些交互和注意力得分的总和。

写一个self-attention模块包括以下步骤

  • 准备输入
  • 初始化权重
  • 推导key, query 和 value
  • 计算输入1的注意力得分
  • 计算softmax
  • 将分数与值相乘
  • 将权重值相加,得到输出1
  • 对输入2和输入3重复步骤4-7

注:实际上,数学运算是矢量化的,,即所有的输入都一起经历数学运算。在后面的代码部分中可以看到这一点。

步骤1:准备输入

图1.1: 准备输入

在本教程中,我们从3个输入开始,每个输入的维数为4。

步骤2:初始化权重

每个输入必须有三个表示(见下图)。这些表示称为键(key,橙色)查询(query,红色)值(value,紫色)。在本例中,我们假设这些表示的维数是3。因为每个输入的维数都是4,这意味着每组权重必须是4×3。

注: 稍后我们将看到value的维度也是输出的维度。

图1.2:从每个输入得出键、查询和值的表示

为了得到这些表示,每个输入(绿色)都乘以一组键的权重、一组查询的权重,以及一组值的权重。在本示例中,我们将三组权重“初始化”如下。

key的权重:

query的权重:

value的权重:

注: 在神经网络设置中,这些权重通常是很小的数字,使用适当的随机分布(例如高斯、Xavier和Kaiming分布)进行随机初始化。

步骤3:推导键、查询和值

现在,我们有了三组权重,让我们实际获取每个输入的键、查询和值表示。

输入1的键表示:

使用相同的权重集合得到输入2的键表示:

使用相同的权重集合得到输入3的键表示:

一种更快的方法是对上述操作进行矢量化:

图1.3a:从每个输入推导出键表示

同样的方法,可以获取每个输入的值表示:

图1.3b:从每个输入推导出值表示

最后,得到查询表示

图1.3b:从每个输入推导出查询表示

注: 在实践中,偏差向量(bias vector )可以添加到矩阵乘法的乘积。

步骤4:计算输入1的attention scores

图1.4:从查询1中计算注意力得分(蓝色)

为了获得注意力得分,我们首先在输入1的查询(红色)和所有(橙色)之间取一个点积。因为有3个表示(因为有3个输入),我们得到3个注意力得分(蓝色)。

注:现在只使用Input 1中的查询。稍后,我们将对其他查询重复相同的步骤。

步骤5:计算softmax

图1.5:Softmax注意力评分(蓝色)

在所有注意力得分中使用softmax(蓝色)。

步骤6:将得分和值相乘

图1.6:由值(紫色)和分数(蓝色)的相乘推导出加权值表示(黄色)

每个输入的softmaxed attention 分数(蓝色)乘以相应的值(紫色)。结果得到3个对齐向量(黄色)。在本教程中,我们将它们称为加权值

步骤7:将加权值相加得到输出1

图1.7:将所有加权值(黄色)相加,得到输出1(深绿色)

将所有加权值(黄色)按元素指向求和:

结果向量[2.0,7.0,1.5](深绿色)是输出1,该输出基于输入1与所有其他键(包括它自己)进行交互的查询表示。

步骤8:重复输入2和输入3

现在,我们已经完成了输出1,我们对输出2和输出3重复步骤4到7。接下来相信你可以自己操作了??。

图1.8:对输入2和输入3重复前面的步骤

代码上手

这是PyTorch代码?,PyTorch是Python的一个流行的深度学习框架。

步骤1:准备输入

代码语言:javascript
复制
import torch

x = [
  [1, 0, 1, 0], # Input 1
  [0, 2, 0, 2], # Input 2
  [1, 1, 1, 1]  # Input 3
 ]
x = torch.tensor(x, dtype=torch.float32)

步骤2:初始化权重

代码语言:javascript
复制
w_key = [
  [0, 0, 1],
  [1, 1, 0],
  [0, 1, 0],
  [1, 1, 0]
]
w_query = [
  [1, 0, 1],
  [1, 0, 0],
  [0, 0, 1],
  [0, 1, 1]
]
w_value = [
  [0, 2, 0],
  [0, 3, 0],
  [1, 0, 3],
  [1, 1, 0]
]
w_key = torch.tensor(w_key, dtype=torch.float32)
w_query = torch.tensor(w_query, dtype=torch.float32)
w_value = torch.tensor(w_value, dtype=torch.float32)

步骤3: 推导键、查询和值

代码语言:javascript
复制
keys = x @ w_key
querys = x @ w_query
values = x @ w_value

print(keys)
# tensor([[0., 1., 1.],
#         [4., 4., 0.],
#         [2., 3., 1.]])

print(querys)
# tensor([[1., 0., 2.],
#         [2., 2., 2.],
#         [2., 1., 3.]])

print(values)
# tensor([[1., 2., 3.],
#         [2., 8., 0.],
#         [2., 6., 3.]])

步骤4:计算注意力得分

代码语言:javascript
复制
attn_scores = querys @ keys.T

# tensor([[ 2.,  4.,  4.],  # attention scores from Query 1
#         [ 4., 16., 12.],  # attention scores from Query 2
#         [ 4., 12., 10.]]) # attention scores from Query 3

步骤5:计算softmax

代码语言:javascript
复制
from torch.nn.functional import softmax

attn_scores_softmax = softmax(attn_scores, dim=-1)
# tensor([[6.3379e-02, 4.6831e-01, 4.6831e-01],
#         [6.0337e-06, 9.8201e-01, 1.7986e-02],
#         [2.9539e-04, 8.8054e-01, 1.1917e-01]])

# For readability, approximate the above as follows
attn_scores_softmax = [
  [0.0, 0.5, 0.5],
  [0.0, 1.0, 0.0],
  [0.0, 0.9, 0.1]
]
attn_scores_softmax = torch.tensor(attn_scores_softmax)

步骤6:将得分和值相乘

代码语言:javascript
复制
weighted_values = values[:,None] * attn_scores_softmax.T[:,:,None]

# tensor([[[0.0000, 0.0000, 0.0000],
#          [0.0000, 0.0000, 0.0000],
#          [0.0000, 0.0000, 0.0000]],
# 
#         [[1.0000, 4.0000, 0.0000],
#          [2.0000, 8.0000, 0.0000],
#          [1.8000, 7.2000, 0.0000]],
# 
#         [[1.0000, 3.0000, 1.5000],
#          [0.0000, 0.0000, 0.0000],
#          [0.2000, 0.6000, 0.3000]]])

步骤7:求和加权值

代码语言:javascript
复制
outputs = weighted_values.sum(dim=0)

# tensor([[2.0000, 7.0000, 1.5000],  # Output 1
#         [2.0000, 8.0000, 0.0000],  # Output 2
#         [2.0000, 7.8000, 0.3000]]) # Output 3

扩展到Transformer

那么,接下来怎么办呢?Transformer

的确,我们生活在一个深度学习研究和高计算资源的激动人心的时代。Transformer是Attention is All You Need里面提出的,最初用于执行神经机器翻译。研究人员在此基础上进行了重组、切割、添加和扩展,并将其应用到更多的语言任务中。

在这里,我将简要地介绍如何将self-attention扩展到Transformer架构。

在self-attention模块中:

  • Dimension
  • Bias

self-attention模块的输入:

  • Embedding module
  • Positional encoding
  • Truncating
  • Masking

增加更多的self-attention模块:

  • Multihead
  • Layer stacking
  • self-attention模块之间的模块:
  • Linear transformations
  • LayerNorm

这就是所有了!希望你觉得内容简单易懂。

参考文献:

Attention Is All You Need

https://arxiv.org/abs/1706.03762

The Illustrated Transformer

https://jalammar.github.io/illustrated-transformer/

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-11-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 相约机器人 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 【新智元导读】NLP领域最近的快速进展离不开基于Transformer的架构,本文以图解+代码的形式,带领读者完全理解self-attention机制及其背后的数学原理,并扩展到Transformer。
相关产品与服务
机器翻译
机器翻译(Tencent Machine Translation,TMT)结合了神经机器翻译和统计机器翻译的优点,从大规模双语语料库自动学习翻译知识,实现从源语言文本到目标语言文本的自动翻译,目前可支持十余种语言的互译。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档