目录
循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递归神经网络(recursive neural network)
首先先上图,然后再解释:
之前介绍的循环神经⽹络模型都是假设当前时间步是由前⾯的较早时间步的序列决定的,因此它 们都将信息通过隐藏状态从前往后传递。有时候,当前时间步也可能由后⾯时间步决定。例如, 当我们写下⼀个句⼦时,可能会根据句⼦后⾯的词来修改句⼦前⾯的⽤词。**双向循环神经⽹络通过增加从后往前传递信息的隐藏层来更灵活地处理这类信息。**下图演⽰了⼀个含单隐藏层的双向循环神经⽹络的架构。
在之前你已经见过对于前向传播(上图蓝色箭头所指方向)怎样在神经网络中从左到右地计算这些激活项,直到输出所有地预测结果。而对于反向传播,我想你已经猜到了,反向传播地计算方向(上图红色箭头所指方向)与前向传播基本上是相反的。
我们先定义一个元素损失函数:
在这个反向传播的过程中,最重要的信息传递或者说最重要的递归运算就是这个从右到左的运算,这也就是为什么这个算法有一个很别致的名字,叫做**“通过(穿越)时间反向传播(backpropagation through time)”。**取这个名字的原因是对于前向传播,你需要从左到右进行计算,在这个过程中,时刻?不断增加。而对于反向传播,你需要从右到左进行计算,就像时间倒流。“通过时间反向传播”,就像穿越时光,这种说法听起来就像是你需要一台时光机来实现这个算法一样。
由于RNN特有的memory会影响后期其他的RNN的特点,梯度时大时小,learning rate没法个性化的调整,导致RNN在train的过程中,Loss会震荡起伏,为了解决RNN的这个问题,在训练的时候,可以设置临界值,当梯度大于某个临界值,直接截断,用这个临界值作为梯度的大小,防止大幅震荡。