Loading [MathJax]/jax/output/CommonHTML/config.js
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >主成分分析「 三维图 」

主成分分析「 三维图 」

作者头像
用户6317549
发布于 2019-11-11 15:30:23
发布于 2019-11-11 15:30:23
6.4K1
举报
文章被收录于专栏:科研猫科研猫

主成分分析(Principal Component Analysis,PCA),是一种降维方法,也是在文章发表中常见的用于显示样本与样本之间差异性的计算工具。在上一次教程中,我们教大家如何绘制二维主成分分析图,不过有时候二维的平面没有办法展示出样本之间的差异,所以需要用更多维度,比如三维主成分分析图来展示。今天的教程,我们以一篇发表在Blood (IF = 16.562)上的文章为例进一步解读PCA的图形绘制。在这个实例中,通过对芯片表达谱数据进行PCA分析,观察前三个PC(PC1, PC2, PC3),可以看出细胞按照不同来源:peripheral blood (PB),bone marrow (BM), 和lymph nodes (LN)分成三组。

本次教程为大家带来是,是如何根据表达谱数据,通过运用主成分分析的方法,显示样本与样本之间的差异性,并且在三维坐标上展示这些差异。

01

数据读取

首先我们加载需要用到的R包,scatterplot3d包用于作图gmodels包用于计算PCA。

读入表达谱数据并显示文件前6行,每一列为一个样本,每一行为一个基因。我们使用表达谱样本一共有10个,其中M1到M5为Case,M6-M10为control。

02

主成分分析

使用gmodels包中的fast.prcomp函数计算PCA。该包计算运行所用时间比R内置prcomp函数要快很多。计算完成后查看PCA计算前6行,可以看出最终的结算结果为一个矩阵,一共有10列10行,每一行为一个样本,每一列为一个主成分(PC)。我们就用这样一个PCA计算结果,来看Case和Control这两组样本之间的差异。然后建立一个data.frame,将PC数据和表型数都存入进来。这一步与上一版教程是一样的~

然后,便是绘图的时刻了~

03

基础绘图

首先,我们使用前三个PC,绘制基本三维图。

这样,一张三维图就制作完成了。当然,如果我们真的在ppt或者文章中绘制成这个样子,肯定会被老板骂的一(gou)无(xue)是(lin)处(tou)~ 所以,我们需要对图进行美化和调整。

04

初级调整

我们将case和control用不同的颜色进行展示。

05

中级调整

从这张图中,我们可以基本上出case和control在三维空间中分成了两组。当然,图片中的点有些小,而且三维图的角度还不够,所以需要进行进一步调整。

同样,我们也可以为case和control增加不同的形状。

06

高级调整

不知道大家是否发现了一个问题,我们绘制的这张三维图上,是没有图注信息的。虽然我们可以根据代码中的颜色和形状来判断哪些是case,哪些是control,但是这样毕竟不方便,所以我们需要为图片加上图注。

这样,case 和control就一目了然了~

07

终级调整

当然,在这张图上,我们一共有10个样本,如果我们想知道哪些点代表哪些样本,通过这张图是非常不方便的。所以我们需要以text的方式,将样本名加在三维图中。

这样,每一个样本都可以看的清清楚楚。不过,如果是100个样本,我们想要将所有样本显示出来是非常不现实的,大部分我们只需要将特定的样本显示出来。给数据新建一个Label,显示那些重要的样本。

结语

这样,一张完美的三维PCA散点图就诞生了~相信这样一张图,会为大家的文章带来无限可能性。科研做图的一次次完善,都与高分杂志距离的每一次次缩减。我们与顶级杂志的距离,也许只差一张完美的图。

未经许可请勿随意转载,

版权事宜由上海辰明律师事务所提供法务支持

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-11-11,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 科研猫 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
1 条评论
热度
最新
老师,您好 拿这个如何拉高坐标轴 以及 给坐标轴添加具体的分布百分比信息哇 谢谢老师
老师,您好 拿这个如何拉高坐标轴 以及 给坐标轴添加具体的分布百分比信息哇 谢谢老师
回复回复点赞举报
推荐阅读
编辑精选文章
换一批
主成分(PCA)分析
主成分分析(Principal Component Analysis,PCA), 是一种降维方法,也是在文章发表中常见的用于显示样本与样本之间差异性的计算工具。比如我们在进行转录组数据分析的时候,每一个样本可以检测到3万个基因,如果有10个这样的样本,我们如何判断哪些样本之间的相似性能高。这时候,我们可以通过主成分分析,显示样本与样本之间的关系。
用户6317549
2019/11/07
4.3K0
独家 | 主成分分析用于可视化(附链接)
作者:Adrian Tam, Ray Hong, Jinghan Yu, Brendan Artley 翻译:汪桉旭校对:吴振东 本文约3300字,建议阅读5分钟本文教你了解了如何使用主成分分析来可视化数据。 标签:主成分分析 主成分分析是一种无监督的机器学习技术。可能它最常见的用处就是数据的降维。主成分分析除了用于数据预处理,也可以用来可视化数据。一图胜万言。一旦数据可视化,在我们的机器学习模型中就可以更容易得到一些洞见并且决定下一步做什么。 在这篇教程中,你将发现如何使用PCA可视化数据,并且使用可视化
数据派THU
2022/03/14
6750
【视频】主成分分析PCA降维方法和R语言分析葡萄酒可视化实例|数据分享
降维技术之一是主成分分析 (PCA) 算法,该算法将可能相关变量的一组观察值转换为一组线性不相关变量。在本文中,我们将讨论如何通过使用 R编程语言使用主成分分析来减少数据维度分析葡萄酒数据。
拓端
2022/06/08
1.1K0
【视频】主成分分析PCA降维方法和R语言分析葡萄酒可视化实例|数据分享
【视频】主成分分析PCA降维方法和R语言分析葡萄酒可视化实例|数据分享|附代码数据
最近我们被客户要求撰写关于主成分分析PCA的研究报告,包括一些图形和统计输出。 降维技术之一是主成分分析 (PCA) 算法,该算法将可能相关变量的一组观察值转换为一组线性不相关变量。在本文中,我们将讨论如何通过使用 R编程语言使用主成分分析来减少数据维度分析葡萄酒数据
拓端
2022/12/23
1.4K0
一文看懂主成分分析
主成分分析法是数据挖掘中常用的一种降维算法,是Pearson在1901年提出的,再后来由hotelling在1933年加以发展提出的一种多变量的统计方法,其最主要的用途在于“降维”,通过析取主成分显出的最大的个别差异,也可以用来削减回归分析和聚类分析中变量的数目,与因子分析类似。
生信技能树
2018/07/27
27.5K0
一文看懂主成分分析
R可视乎|主成分分析结果可视化
主成分分析法是很常用的一种数据降维方法[1]。该方法可以减少数据的维数,并保持对方差贡献最大的特征,相当于保留低阶主成分,忽略高阶主成分。
庄闪闪
2021/04/09
1.9K0
主成分分析(PCA)在R 及 Python中的实战指南
大数据文摘作品,转载要求见文末 编译团队|李小帅,姚佳灵 有太多不如没有!如果一个数据集有太多变量,会怎么样?这里有些可能的情况你也许会碰上—— 1.你发现大部分变量是相关的。2.你失去耐心,决定在整个数据集上建模。这个模型返回很差的精度,于是你的感觉很糟糕。3.你变得优柔寡断,不知道该做什么。4.你开始思考一些策略方法来找出几个重要变量。 相信我,处理这样的情形不是像听上去那样难。统计技术,比如,因子分析,主成分分析有助于解决这样的困难。在本文中,我详细地解释了主成分分析的概念。我一直保持说明简要而详实。
大数据文摘
2018/05/22
3.1K0
主成分分析降维(MNIST数据集)
今天看了用主成分分析简化数据,就顺便用MNIST数据集做了下实验,想直观地看一下效果,并通过完成这个小demo深入理解下原理。 我发现“是什么、能做什么、怎么用、效果是什么、原理是什么、优缺点是什么”这样的思路能让我更好地接受一个新知识,之所以把原理放在效果后面,是因为我比较喜欢先看看它的作用,可视化意义之后能提起我对一个知识的兴趣,加深对它意义的理解,后面看数学原理会容易,所以整篇文章就以这样的思路组织整理。 主成分分析是什么 主成分分析(Principal Component Analysis,PCA
刘开心_1266679
2018/04/17
1.8K0
主成分分析降维(MNIST数据集)
多元统计分析:主成分分析
长途电话通话时长 决定, 这5个指标是总量指标,说明一个城市的电信业务规模和电信通信业务发展水平
yiyun
2022/04/01
1.6K0
多元统计分析:主成分分析
高维数据 | R语言绘图基础之主成分分析
在视觉性方面,人类普遍能够感知的是二维和三维空间。对于高维数据的可视化是将高维数据投影到二维或三维空间,去掉冗余属性,同时保留高维空间的数据和特征。说白了,高维数据的可视化就是使用降维度方法,主要分成线性和非线性两大类,关于非线性的非度量多维尺度分析NMDS见往期文章非度量多维尺度分析(NMDS),关于线性的PCA方法,见往期文章PCA做图最佳搭档-ggbiplot,本文主要针对迷弥小粉丝关于绘制线性PCA图数据处理过程遇到的问题进行记录。
黑妹的小屋
2020/08/06
2K0
跟着存档教程动手学RNAseq分析(四):使用DESeq2进行DE分析的QC方法
DESeq2工作流程中的下一个步骤是QC,它包括对计数数据执行样本级和基因级QC检查的步骤,以帮助我们确保样本/重复看起来良好。
王诗翔呀
2022/06/27
2.1K0
跟着存档教程动手学RNAseq分析(四):使用DESeq2进行DE分析的QC方法
R语言主成分分析
在医学研究中,为了客观、全面地分析问题,常要记录多个观察指标并考虑众多的影响因素,这样的数据虽然可以提供丰富的信息,但同时也使得数据的分析工作更趋复杂化。
医学和生信笔记
2023/02/14
6370
R语言主成分分析
主成分分析降维(MNIST数据集)
今天看了用主成分分析简化数据,就顺便用MNIST数据集做了下实验,想直观地看一下效果,并通过完成这个小demo深入理解下原理。 我发现“是什么、能做什么、怎么用、效果是什么、原理是什么、优缺点是什么”这样的思路能让我更好地接受一个新知识,之所以把原理放在效果后面,是因为我比较喜欢先看看它的作用,可视化意义之后能提起我对一个知识的兴趣,加深对它意义的理解,后面看数学原理会容易,所以整篇文章就以这样的思路组织整理。 主成分分析是什么 主成分分析(Principal Component Analysis,PCA)
用户1332428
2018/03/09
1.4K0
主成分分析降维(MNIST数据集)
转录组表达矩阵为什么需要主成分分析以及怎么做
我们阅读量破万的综述:RNA-seq这十年(3万字长文综述)给粉丝朋友们带来了很多理解上的挑战:
生信技能树
2019/08/13
8.6K0
原创 | 一文读懂主成分分析
文:王佳鑫审校:陈之炎 本文约6000字,建议阅读10+分钟本文带你了解PCA的基本数学原理及工作原理。 概述 主成分分析PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。 本文用直观和易懂的方式叙述PCA的基本数学原理,不会引入严格的数学推导。希望读者在看完这篇文章后能更好地明白PCA的工作原理。 一、降维概述 1.1 数组和序列(Series)的维度
数据派THU
2022/09/01
1.1K0
原创 |  一文读懂主成分分析
【R语言】factoextra生成发表级PCA主成分分析图(一)
今天我们来给大家介绍另一个做PCA分析并绘图的R包factoextra,很多SCI文章中都用到了这个R包。换句话说这个R包画出来的PCA图是发表级的。
生信交流平台
2022/09/21
1.2K0
【R语言】factoextra生成发表级PCA主成分分析图(一)
一文看懂主成分分析(文末推荐视频教程)
主成分分析法是数据挖掘中常用的一种降维算法,是Pearson在1901年提出的,再后来由hotelling在1933年加以发展提出的一种多变量的统计方法,其最主要的用途在于“降维”,通过析取主成分显出的最大的个别差异,也可以用来削减回归分析和聚类分析中变量的数目,与因子分析类似。
生信技能树
2020/03/04
1.3K0
一文看懂主成分分析(文末推荐视频教程)
R语言主成分分析(PCA)葡萄酒可视化:主成分得分散点图和载荷图
数据包含177个样本和13个变量的数据框;vintages包含类标签。这些数据是对生长在意大利同一地区但来自三个不同栽培品种的葡萄酒进行化学分析的结果:内比奥罗、巴贝拉和格里格诺葡萄。来自内比奥罗葡萄的葡萄酒被称为巴罗洛。
拓端
2022/06/08
2.8K0
R语言主成分分析(PCA)葡萄酒可视化:主成分得分散点图和载荷图
主成分分析(PCA)
主成分分析(Principal components analysis,简称PCA)是最重要的降维方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。一般我们提到降维最容易想到的算法就是PCA。
AngelNH
2020/07/15
7530
主成分分析(PCA)
如何快速分析样本之间的相关性(主成分分析):Clustvis
首先给大家介绍一下主成分分析(PCA)的定义,PCA是一种通过正交变换将一组可能存在相关性的变量转换为不相关的变量的统计方法,这些转换后的变量就被称为主成分(来自维基百科)。而PCA的主要作用包括但不限于:方便数据可视化、数据降维等等。
用户6317549
2019/09/24
6.2K0
如何快速分析样本之间的相关性(主成分分析):Clustvis
推荐阅读
相关推荐
主成分(PCA)分析
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档