前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >详解 Redis 内存管理机制和实现

详解 Redis 内存管理机制和实现

原创
作者头像
程序员历小冰
修改2019-10-31 10:11:35
1.9K0
修改2019-10-31 10:11:35
举报
文章被收录于专栏:程序员历小冰

Redis是一个基于内存的键值数据库,其内存管理是非常重要的。本文内存管理的内容包括:过期键的懒性删除和过期删除以及内存溢出控制策略。

最大内存限制

Redis使用 maxmemory 参数限制最大可用内存,默认值为0,表示无限制。限制内存的目的主要 有:

  • 用于缓存场景,当超出内存上限 maxmemory 时使用 LRU 等删除策略释放空间。
  • 防止所用内存超过服务器物理内存。因为 Redis 默认情况下是会尽可能多使用服务器的内存,可能会出现服务器内存不足,导致 Redis 进程被杀死。

maxmemory 限制的是Redis实际使用的内存量,也就是 used_memory统计项对应的内存。由于内存碎片率的存在,实际消耗的内存 可能会比maxmemory设置的更大,实际使用时要小心这部分内存溢出。具体Redis 内存监控的内容请查看一文了解 Redis 内存监控和内存消耗

Redis默认无限使用服务器内存,为防止极端情况下导致系统内存耗 尽,建议所有的Redis进程都要配置maxmemory。 在保证物理内存可用的情况下,系统中所有Redis实例可以调整 maxmemory参数来达到自由伸缩内存的目的。

内存回收策略

Redis 回收内存大致有两个机制:一是删除到达过期时间的键值对象;二是当内存达到 maxmemory 时触发内存移除控制策略,强制删除选择出来的键值对象。

删除过期键对象

Redis 所有的键都可以设置过期属性,内部保存在过期表中,键值表和过期表的结果如下图所示。当 Redis保存大量的键,对每个键都进行精准的过期删除可能会导致消耗大量的 CPU,会阻塞 Redis 的主线程,拖累 Redis 的性能,因此 Redis 采用惰性删除和定时任务删除机制实现过期键的内存回收。

惰性删除是指当客户端操作带有超时属性的键时,会检查是否超过键的过期时间,然后会同步或者异步执行删除操作并返回键已经过期。这样可以节省 CPU成本考虑,不需要单独维护过期时间链表来处理过期键的删除。

过期键的惰性删除策略由 db.c/expireifNeeded 函数实现,所有对数据库的读写命令执行之前都会调用 expireifNeeded 来检查命令执行的键是否过期。如果键过期,expireifNeeded 会将过期键从键值表和过期表中删除,然后同步或者异步释放对应对象的空间。源码展示的时 Redis 4.0 版本。

expireIfNeeded 先从过期表中获取键对应的过期时间,如果当前时间已经超过了过期时间(lua脚本执行则有特殊逻辑,详看代码注释),则进入删除键流程。删除键流程主要进行了三件事:

  • 一是删除操作命令传播,通知 slave 实例并存储到 AOF 缓冲区中
  • 二是记录键空间事件,
  • 三是根据 lazyfree_lazy_expire 是否开启进行异步删除或者异步删除操作。
代码语言:txt
复制
int expireIfNeeded(redisDb *db, robj *key) {
    // 获取键的过期时间
    mstime_t when = getExpire(db,key);
    mstime_t now;
    // 键没有过期时间
    if (when < 0) return 0;
    // 实例正在从硬盘 laod 数据,比如说 RDB 或者 AOF
    if (server.loading) return 0;

    // 当执行lua脚本时,只有键在lua一开始执行时
    // 就到了过期时间才算过期,否则在lua执行过程中不算失效
    now = server.lua_caller ? server.lua_time_start : mstime();

    // 当本实例是slave时,过期键的删除由master发送过来的
    // del 指令控制。但是这个函数还是将正确的信息返回给调用者。
    if (server.masterhost != NULL) return now > when;
    // 判断是否未过期
    if (now <= when) return 0;

    // 代码到这里,说明键已经过期,而且需要被删除
    server.stat_expiredkeys++;
    // 命令传播,到 slave 和 AOF
    propagateExpire(db,key,server.lazyfree_lazy_expire);
    // 键空间通知使得客户端可以通过订阅频道或模式, 来接收那些以某种方式改动了 Redis 数据集的事件。
    notifyKeyspaceEvent(NOTIFY_EXPIRED,
        "expired",key,db->id);
    // 如果是惰性删除,调用dbAsyncDelete,否则调用 dbSyncDelete
    return server.lazyfree_lazy_expire ? dbAsyncDelete(db,key) :
                                         dbSyncDelete(db,key);
}

上图是写命令传播的示意图,删除命令的传播和它一致。propagateExpire 函数先调用 feedAppendOnlyFile 函数将命令同步到 AOF 的缓冲区中,然后调用 replicationFeedSlaves函数将命令同步到所有的 slave 中。Redis 复制的机制可以查看Redis 复制过程详解

代码语言:txt
复制
// 将命令传递到slave和AOF缓冲区。maser删除一个过期键时会发送Del命令到所有的slave和AOF缓冲区
void propagateExpire(redisDb *db, robj *key, int lazy) {
    robj *argv[2];
    // 生成同步的数据
    argv[0] = lazy ? shared.unlink : shared.del;
    argv[1] = key;
    incrRefCount(argv[0]);
    incrRefCount(argv[1]);
    // 如果开启了 AOF 则追加到 AOF 缓冲区中
    if (server.aof_state != AOF_OFF)
        feedAppendOnlyFile(server.delCommand,db->id,argv,2);
    // 同步到所有 slave
    replicationFeedSlaves(server.slaves,db->id,argv,2);

    decrRefCount(argv[0]);
    decrRefCount(argv[1]);
}

dbAsyncDelete 函数会先调用 dictDelete 来删除过期表中的键,然后处理键值表中的键值对象。它会根据值的占用的空间来选择是直接释放值对象,还是交给 bio 异步释放值对象。判断依据就是值的估计大小是否大于 LAZYFREE_THRESHOLD 阈值。键对象和 dictEntry 对象则都是直接被释放。

代码语言:txt
复制
#define LAZYFREE_THRESHOLD 64
int dbAsyncDelete(redisDb *db, robj *key) {
    // 删除该键在过期表中对应的entry
    if (dictSize(db->expires) > 0) dictDelete(db->expires,key->ptr);

    // unlink 该键在键值表对应的entry
    dictEntry *de = dictUnlink(db->dict,key->ptr);
    // 如果该键值占用空间非常小,懒删除反而效率低。所以只有在一定条件下,才会异步删除
    if (de) {
        robj *val = dictGetVal(de);
        size_t free_effort = lazyfreeGetFreeEffort(val);
        // 如果释放这个对象消耗很多,并且值未被共享(refcount == 1)则将其加入到懒删除列表
        if (free_effort > LAZYFREE_THRESHOLD && val->refcount == 1) {
            atomicIncr(lazyfree_objects,1);
            bioCreateBackgroundJob(BIO_LAZY_FREE,val,NULL,NULL);
            dictSetVal(db->dict,de,NULL);
        }
    }

    // 释放键值对,或者只释放key,而将val设置为NULL来后续懒删除
    if (de) {
        dictFreeUnlinkedEntry(db->dict,de);
        // slot 和 key 的映射关系是用于快速定位某个key在哪个 slot中。
        if (server.cluster_enabled) slotToKeyDel(key);
        return 1;
    } else {
        return 0;
    }
}

dictUnlink 会将键值从键值表中删除,但是却不释放 key、val和对应的表entry对象,而是将其直接返回,然后再调用dictFreeUnlinkedEntry进行释放。dictDelete 是它的兄弟函数,但是会直接释放相应的对象。二者底层都通过调用 dictGenericDelete来实现。dbAsyncDelete d的兄弟函数 dbSyncDelete 就是直接调用dictDelete来删除过期键。

代码语言:txt
复制
void dictFreeUnlinkedEntry(dict *d, dictEntry *he) {
    if (he == NULL) return;
    // 释放key对象
    dictFreeKey(d, he);
    // 释放值对象,如果它不为null
    dictFreeVal(d, he);
    // 释放 dictEntry 对象
    zfree(he);
}

Redis 有自己的 bio 机制,主要是处理 AOF 落盘、懒删除逻辑和关闭大文件fd。bioCreateBackgroundJob 函数将释放值对象的 job 加入到队列中,bioProcessBackgroundJobs会从队列中取出任务,根据类型进行对应的操作。

代码语言:txt
复制
void *bioProcessBackgroundJobs(void *arg) {
    .....
    while(1) {
        listNode *ln;

        ln = listFirst(bio_jobs[type]);
        job = ln->value;
        if (type == BIO_CLOSE_FILE) {
            close((long)job->arg1);
        } else if (type == BIO_AOF_FSYNC) {
            aof_fsync((long)job->arg1);
        } else if (type == BIO_LAZY_FREE) {
            // 根据参数来决定要做什么。有参数1则要释放它,有参数2和3是释放两个键值表
            // 过期表,也就是释放db 只有参数三是释放跳表
            if (job->arg1)
                lazyfreeFreeObjectFromBioThread(job->arg1);
            else if (job->arg2 && job->arg3)
                lazyfreeFreeDatabaseFromBioThread(job->arg2,job->arg3);
            else if (job->arg3)
                lazyfreeFreeSlotsMapFromBioThread(job->arg3);
        }
        zfree(job);
        ......
    }
}

dbSyncDelete 则是直接删除过期键,并且将键、值和 DictEntry 对象都释放。

代码语言:txt
复制
int dbSyncDelete(redisDb *db, robj *key) {
    // 删除过期表中的entry
    if (dictSize(db->expires) > 0) dictDelete(db->expires,key->ptr);
    // 删除键值表中的entry
    if (dictDelete(db->dict,key->ptr) == DICT_OK) {
        // 如果开启了集群,则删除slot 和 key 映射表中key记录。
        if (server.cluster_enabled) slotToKeyDel(key);
        return 1;
    } else {
        return 0;
    }
}

但是单独用这种方式存在内存泄露的问题,当过期键一直没有访问将无法得到及时删除,从而导致内存不能及时释放。正因为如此,Redis还提供另一种定时任 务删除机制作为惰性删除的补充。

Redis 内部维护一个定时任务,默认每秒运行10次(通过配置控制)。定时任务中删除过期键逻辑采用了自适应算法,根据键的 过期比例、使用快慢两种速率模式回收键,流程如下图所示。

  • 1)定时任务首先根据快慢模式( 慢模型扫描的键的数量以及可以执行时间都比快模式要多 )和相关阈值配置计算计算本周期最大执行时间、要检查的数据库数量以及每个数据库扫描的键数量。
  • 2) 从上次定时任务未扫描的数据库开始,依次遍历各个数据库。
  • 3)从数据库中随机选手 ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP 个键,如果发现是过期键,则调用 activeExpireCycleTryExpire 函数删除它。
  • 4)如果执行时间超过了设定的最大执行时间,则退出,并设置下一次使用慢模式执行。
  • 5)未超时的话,则判断是否采样的键中是否有25%的键是过期的,如果是则继续扫描当前数据库,跳到第3步。否则开始扫描下一个数据库。

定期删除策略由 expire.c/activeExpireCycle 函数实现。在redis事件驱动的循环中的eventLoop->beforesleep和

周期性操作 databasesCron 都会调用 activeExpireCycle 来处理过期键。但是二者传入的 type 值不同,一个是ACTIVE_EXPIRE_CYCLE_SLOW 另外一个是ACTIVE_EXPIRE_CYCLE_FAST。activeExpireCycle 在规定的时间,分多次遍历各个数据库,从 expires 字典中随机检查一部分过期键的过期时间,删除其中的过期键,相关源码如下所示。

代码语言:txt
复制
void activeExpireCycle(int type) {
    // 上次检查的db
    static unsigned int current_db = 0; 
    // 上次检查的最大执行时间
    static int timelimit_exit = 0;
    // 上一次快速模式运行时间
    static long long last_fast_cycle = 0; /* When last fast cycle ran. */

    int j, iteration = 0;
    // 每次检查周期要遍历的DB数
    int dbs_per_call = CRON_DBS_PER_CALL;
    long long start = ustime(), timelimit, elapsed;

    ..... // 一些状态时不进行检查,直接返回

    // 如果上次周期因为执行达到了最大执行时间而退出,则本次遍历所有db,否则遍历db数等于 CRON_DBS_PER_CALL
    if (dbs_per_call > server.dbnum || timelimit_exit)
        dbs_per_call = server.dbnum;

    // 根据ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC计算本次最大执行时间
    timelimit = 1000000*ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC/server.hz/100;
    timelimit_exit = 0;
    if (timelimit <= 0) timelimit = 1;
    // 如果是快速模式,则最大执行时间为ACTIVE_EXPIRE_CYCLE_FAST_DURATION
    if (type == ACTIVE_EXPIRE_CYCLE_FAST)
        timelimit = ACTIVE_EXPIRE_CYCLE_FAST_DURATION; /* in microseconds. */
    // 采样记录
    long total_sampled = 0;
    long total_expired = 0;
    // 依次遍历 dbs_per_call 个 db
    for (j = 0; j < dbs_per_call && timelimit_exit == 0; j++) {
        int expired;
        redisDb *db = server.db+(current_db % server.dbnum);
        // 将db数增加,一遍下一次继续从这个db开始遍历
        current_db++;

        do {
            ..... // 申明变量和一些情况下 break
            if (num > ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP)
                num = ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP;
            // 主要循环,在过期表中进行随机采样,判断是否比率大于25%
            while (num--) {
                dictEntry *de;
                long long ttl;

                if ((de = dictGetRandomKey(db->expires)) == NULL) break;
                ttl = dictGetSignedIntegerVal(de)-now;
                // 删除过期键
                if (activeExpireCycleTryExpire(db,de,now)) expired++;
                if (ttl > 0) {
                    /* We want the average TTL of keys yet not expired. */
                    ttl_sum += ttl;
                    ttl_samples++;
                }
                total_sampled++;
            }
            // 记录过期总数
            total_expired += expired;
            // 即使有很多键要过期,也不阻塞很久,如果执行超过了最大执行时间,则返回
            if ((iteration & 0xf) == 0) { /* check once every 16 iterations. */
                elapsed = ustime()-start;
                if (elapsed > timelimit) {
                    timelimit_exit = 1;
                    server.stat_expired_time_cap_reached_count++;
                    break;
                }
            }
            // 当比率小于25%时返回
        } while (expired > ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP/4);
    }
    .....// 更新一些server的记录数据
}

activeExpireCycleTryExpire 函数的实现就和 expireIfNeeded 类似,这里就不赘述了。

代码语言:txt
复制
int activeExpireCycleTryExpire(redisDb *db, dictEntry *de, long long now) {
    long long t = dictGetSignedIntegerVal(de);
    if (now > t) {
        sds key = dictGetKey(de);
        robj *keyobj = createStringObject(key,sdslen(key));

        propagateExpire(db,keyobj,server.lazyfree_lazy_expire);
        if (server.lazyfree_lazy_expire)
            dbAsyncDelete(db,keyobj);
        else
            dbSyncDelete(db,keyobj);
        notifyKeyspaceEvent(NOTIFY_EXPIRED,
            "expired",keyobj,db->id);
        decrRefCount(keyobj);
        server.stat_expiredkeys++;
        return 1;
    } else {
        return 0;
    }
}

定期删除策略的关键点就是删除操作执行的时长和频率:

  • 如果删除操作太过频繁或者执行时间太长,就对 CPU 时间不是很友好,CPU 时间过多的消耗在删除过期键上。
  • 如果删除操作执行太少或者执行时间太短,就不能及时删除过期键,导致内存浪费。
内存溢出控制策略

当Redis所用内存达到maxmemory上限时会触发相应的溢出控制策略。 具体策略受maxmemory-policy参数控制,Redis支持6种策略,如下所示:

  • 1)noeviction:默认策略,不会删除任何数据,拒绝所有写入操作并返 回客户端错误信息(error)OOM command not allowed when used memory,此 时Redis只响应读操作。
  • 2)volatile-lru:根据LRU算法删除设置了超时属性(expire)的键,直 到腾出足够空间为止。如果没有可删除的键对象,回退到noeviction策略。
  • 3)allkeys-lru:根据LRU算法删除键,不管数据有没有设置超时属性, 直到腾出足够空间为止。
  • 4)allkeys-random:随机删除所有键,直到腾出足够空间为止。
  • 5)volatile-random:随机删除过期键,直到腾出足够空间为止。
  • 6)volatile-ttl:根据键值对象的ttl属性,删除最近将要过期数据。如果没有,回退到noeviction策略。

内存溢出控制策略可以使用 config set maxmemory-policy {policy} 语句进行动态配置。Redis 提供了丰富的空间溢出控制策略,我们可以根据自身业务需要进行选择。

当设置 volatile-lru 策略时,保证具有过期属性的键可以根据 LRU 剔除,而未设置超时的键可以永久保留。还可以采用allkeys-lru 策略把 Redis 变为纯缓存服务器使用。

当Redis因为内存溢出删除键时,可以通过执行 info stats 命令查看 evicted_keys 指标找出当前 Redis 服务器已剔除的键数量。

每次Redis执行命令时如果设置了maxmemory参数,都会尝试执行回收 内存操作。当Redis一直工作在内存溢出(used_memory>maxmemory)的状态下且设置非 noeviction 策略时,会频繁地触发回收内存的操作,影响Redis 服务器的性能,这一点千万要引起注意。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 最大内存限制
  • 内存回收策略
    • 删除过期键对象
      • 内存溢出控制策略
      相关产品与服务
      云数据库 Redis
      腾讯云数据库 Redis(TencentDB for Redis)是腾讯云打造的兼容 Redis 协议的缓存和存储服务。丰富的数据结构能帮助您完成不同类型的业务场景开发。支持主从热备,提供自动容灾切换、数据备份、故障迁移、实例监控、在线扩容、数据回档等全套的数据库服务。
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档