前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >tensorflow2.0五种机器学习算法对中文文本分类

tensorflow2.0五种机器学习算法对中文文本分类

作者头像
机器学习AI算法工程
发布2019-10-28 15:44:34
2.3K0
发布2019-10-28 15:44:34
举报
文章被收录于专栏:机器学习AI算法工程

中文商品评论短文本分类器,可用于情感分析,各模型的准确率均达到90%以上

运行环境:

tensorflow2.0

python3

数据集:

京东商城评论文本,10万条,标注为0的是差评,标注为1的是好评。

路径:data/goods_zh.txt

已实现的模型:

  1. Transfromer
  2. word2vec+textCNN
  3. fastext
  4. word2vec+LSTM/GRU
  5. word2vec+LSTM/GRU+Attention
  6. word2vec+Bi_LSTM+Attention

项目代码获取方式

关注微信公众号 datayx 然后回复 中文分类 即可获取。

AI项目体验地址 https://loveai.tech

1. Transfromer

Transformer由论文《Attention is All You Need》提出,现在是谷歌云TPU推荐的参考模型。

Attention is All You Need:

https://arxiv.org/abs/1706.03762

Transformer的主体结构图:

模型分为编码器和解码器两个部分。

  • 编码器由6个相同的层堆叠在一起,每一层又有两个支层。第一个支层是一个多头的自注意机制,第二个支层是一个简单的全连接前馈网络。在两个支层外面都添加了一个residual的连接,然后进行了layer nomalization的操作。模型所有的支层以及embedding层的输出维度都是dmode。

  • 解码器也是堆叠了六个相同的层。不过每层除了编码器中那两个支层,解码器还加入了第三个支层,如图中所示同样也用了residual以及layer normalization。

2.textCNN

Yoon Kim在论文(2014 EMNLP) Convolutional Neural Networks for Sentence Classification提出TextCNN。

https://arxiv.org/abs/1408.5882

卷积神经网络CNN应用到文本分类任务,利用多个不同size的kernel来提取句子中的关键信息(类似于多窗口大小的ngram,从而能够更好地捕捉局部相关性。

3.fastext

fasttext是facebook开源的一个词向量与文本分类工具,在2016年开源,典型应用场景是“带监督的文本分类问题”。提供简单而高效的文本分类和表征学习的方法,性能比肩深度学习而且速度更快。

https://github.com/facebookresearch/fastText

fastText结合了自然语言处理和机器学习中最成功的理念。这些包括了使用词袋以及n-gram袋表征语句,还有使用子词(subword)信息,并通过隐藏表征在类别间共享信息。我们另外采用了一个softmax层级(利用了类别不均衡分布的优势)来加速运算过程。

4.RNN ( LSTM/GRU/Bi-LSTM )

RNN(Recurrent Neural Network)是一类用于处理序列数据的神经网络。首先我们要明确什么是序列数据,摘取百度百科词条:时间序列数据是指在不同时间点上收集到的数据,这类数据反映了某一事物、现象等随时间的变化状态或程度。这是时间序列数据的定义,当然这里也可以不是时间,比如文字序列,但总归序列数据有一个特点——后面的数据跟前面的数据有关系。

RNN的结构及变体 我们从基础的神经网络中知道,神经网络包含输入层、隐层、输出层,通过激活函数控制输出,层与层之间通过权值连接。激活函数是事先确定好的,那么神经网络模型通过训练“学“到的东西就蕴含在“权值“中。 基础的神经网络只在层与层之间建立了权连接,RNN最大的不同之处就是在层之间的神经元之间也建立的权连接。如图。

这是一个标准的RNN结构图,图中每个箭头代表做一次变换,也就是说箭头连接带有权值。左侧是折叠起来的样子,右侧是展开的样子,左侧中h旁边的箭头代表此结构中的“循环“体现在隐层。

在展开结构中我们可以观察到,在标准的RNN结构中,隐层的神经元之间也是带有权值的。也就是说,随着序列的不断推进,前面的隐层将会影响后面的隐层。图中O代表输出,y代表样本给出的确定值,L代表损失函数,我们可以看到,“损失“也是随着序列的推荐而不断积累的。

除上述特点之外,标准RNN的还有以下特点: 1、权值共享,图中的W全是相同的,U和V也一样。 2、每一个输入值都只与它本身的那条路线建立权连接,不会和别的神经元连接。


本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-06-09,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习AI算法工程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 运行环境:
  • 数据集:
  • 已实现的模型:
相关产品与服务
NLP 服务
NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档