前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >《深度学习革命》作者:GAN令我惊艳,现在的人们对AI操之过急了

《深度学习革命》作者:GAN令我惊艳,现在的人们对AI操之过急了

作者头像
新智元
发布于 2018-11-08 08:02:11
发布于 2018-11-08 08:02:11
4180
举报
文章被收录于专栏:新智元新智元

来源:the verge

编辑:大明

【新智元导读】近日,学习算法先驱人物、《深度学习革命》一书作者Terrence Sejnowski在接受The Verge访谈时简要介绍了AI的起源和发展,同时表示,关于“杀人AI”和“机器人代替人类”等概念更多是过度炒作的结果,因为人们对AI新技术的期待有些过于着急了。令他印象最深刻的技术是生成对抗网络。

近日,计算神经科学家、《深度学习革命》一书作者Terrence Sejnowski在接受采访时表示,现在像“深度学习”和“神经网络”这样的流行语无处不在,但是大多数对这些词语的理解都被误导了。

Sejnowski是研究学习算法的先驱,《深度学习革命》(The Deep Learning Revolution)一书的作者,该书新版本将于下周由麻省理工学院出版社出版。

他认为,关于“杀手AI”或“机器人超越人类”的话题热议过于关注危机的一面,忽视了计算机科学和神经科学领域中令人兴奋的可能,也忽视了当人工智能与人类智能时发生碰撞时会发生什么。

近日,Sejnkowski接受The Verge访谈时,谈到了“深度学习”一词为何突然变得无处不在,深度学习能做什么、不能做什么,以及对这一概念的炒作问题。

首先,我想问一下定义问题。人们几乎可以完全互换地使用“人工智能”、“神经网络”、“深度学习”和“机器学习”等词。但实际上这些词指的是不同的东西,您能解释一下有哪些不同吗?

Sejnowski是研究学习算法的先驱,《深度学习革命》一书的作者

人工智能(AI)的诞生可以追溯到1956年,当时美国的一些工程师们决定编写一个能够尝试模仿人类智能的计算机程序。而机器学习是在AI中逐步壮大的一个新领域。传统的人工智能方法是编写一个循序渐进的程序来实现某件事情,而机器学习是收集大量试图理解其内容的数据。

比如你正在尝试识别目标,你可以收集大量的图像。然后,通过机器学习这个自动化的过程,就可以剖析各种功能,可以确定某个目标是一辆汽车,而另一个目标是一台订书机。

机器学习是一个非常大的领域,并且可以追溯到最初人们称之为“模式识别”的阶段,但现在的算法在数学上变得更加广泛和复杂。在机器学习中包括受大脑启发而建立的神经网络,然后才是深度学习。深度学习算法具有特定的体系结构。基本上可以这样讲,深度学习是机器学习的一部分,而机器学习是人工智能的一部分。

有哪些事情是机器学习能做,其他程序做不了的?

编写程序非常耗费人力。在过去,计算机运算速度很慢,内存又非常昂贵,以至于必须求助于逻辑,这就是计算机的工作原理,是控制信息的基本机器语言。因为计算机太慢了、计算成本太高了。

但现在,计算已经越来越便宜,劳动力越来越昂贵。计算力甚至便宜到了这种程度:让计算机去学习,比让人类编写程序更有效率。从那时起,深度学习实际上已经开始解决以前在计算机视觉和翻译等领域的问题。而在此之前,人类的编程未踏足过这些领域。

深度学习是计算密集型活动,但用户只需编写一个程序,并提供不同的数据集,就可以解决不同的问题。用户不必非要是相关领域专家。因此,对于存在大量数据的任何事物,都可以产生成千上万的应用程序。

“深度学习”现在似乎无处不在。这个词是如何变得如此流行的?

关于这个时间点我其实可以明确确认:就是在2012年12月的NIPS会议上,这是最大的人工智能会议。这次会议上,Geoff Hinton和他的两个研究生表明,使用一个名为ImageNet的大型数据集,其中包含10000个类别和1000万个图像,并使用深度学习将分类错误率降低了20%。

一般来说,该数据集的图像分类错误率每年只能降低不到1%。这一年的改进顶了20年的研究。从此之后,闸门就被打开了。

深度学习的灵感来自大脑。那么这些不同领域之间,比如计算机科学和神经科学之间,是如何协同工作的?

深度学习的灵感来自神经科学,最成功的深度学习网络是Yann LeCun开发的卷积神经网络(CNN)。

考察一下CNN的架构,它不仅仅是由很多单元组成的,而且这些单元的连接方式基本反映出大脑的结构。在关于视觉系统和视觉皮层的基础研究中,表明大脑的一部分存在简单细胞和复杂细胞。在CNN的架构中,也存在简单细胞和复杂细胞的等价结构,CNN的架构设计直接来源于我们对视觉系统的理解。

Yann没有盲目地试图复制大脑皮层。他尝试了许多不同的变化,但他选择尝试的是那些自然融合的变化。这是一个重要的观察结果。我们在自然与人工智能的融合中可以学到很多东西,而且还有很长的路要走。

《深度学习革命》2018年版封面

我们对计算机科学的理解,在多大程度上取决于我们对大脑的理解程度?

我们现在研究和使用的大部分AI都是基于我们在上世纪60年代对大脑的了解。我们现在知道的更多了,可以将更多的知识融入到神经网络架构中。

击败世界围棋冠军的AlphaGo的架构中不仅包括皮质模型,还包括大脑的另一部分模型,称为基底神经节,这部分结构对于制定一系列决策来实现目标非常重要。有一种称为时间差异的算法,是Richard Sutton在上世纪80年代开发的,将这种算法与深度学习相结合,能够进行人类前所未见的复杂游戏。

当我们了解了大脑的结构,开始明白如何将其集成到人工系统中时,AI的功能将会越来越强大。

人工智能也会影响神经科学吗?

这两个领域是并行的。神经技术创新已经取得了巨大的进步,从一次记录一个神经元,到同时记录数千个神经元,同时记录大脑中的多个部分的反应,可以说完全开辟了一个全新的世界。

我认为,人工智能与人类智能之间存在着一种趋同。随着我们越来越多地了解大脑的工作原理,这些新知识将会反映在AI中。而与此同时,我们实际上也创造出了一整套可用于理解大脑的学习理论,可以让我们分析成千上万的神经元及其活动是如何产生的。所以说,神经科学和人工智能之间存在着这种相互反馈和循环,我认为这一点更令人兴奋,也更为重要。

您即将出版的《深度学习革命》一书中讨论了许多不同的深度学习应用,从自动驾驶汽车到交易。您觉得哪个领域最有趣?

我觉得是生成对抗网络(GAN)。如果使用传统的神经网络,你给出一个输入,得到一个输出。 而GAN能够在没有输入的情况下生成输出。

我第一次听说GAN的时候,正值由网络创建的假视频风行的时候。GAN真的会产生足以乱真的假视频,对吧?

从某种意义上说,它们是在生成内部活动。事实证明,人的大脑就是这样运作的。你可以看到并理解一些东西,然后闭上眼睛,开始想象实际并不存在的东西。你的脑子里会产生一个视觉图像,周围安静下来时,你会有想法。那是因为你的大脑是生成性的。现在,这种新型网络可以生成从未存在过的新模式。

所以打个比方,你可以给GAN输入几百张汽车图片,它就会创建内部结构,可以生成实际上不存在的汽车的新图像,这些图像看起来完全和汽车相似。

另一方面,您认为哪些想法或概念可能被过度炒作了?

没有人可以预测或想象这种新技术的引入会对未来产生什么影响。这里边当然存在炒作。我们还没有解决真正困难的问题。现在我们还没有实现通用智能,但人们都说机器人就在那里静静等着,等着取代人类,尽管目前机器人的发展远远落后于AI,因为其实模仿人类的身体比模仿大脑更加复杂。

这里以一项技术进步为例:激光。激光是在大约50年前发明的,当时的激光发射器大到占据了整个一间房。从那时起,一直到现在的激光器可以缩小到做讲演时使用的“激光笔”大小,而且仅售5美元,激光技术的商业化过程长达50年。

同样的事情也将发生在像自动驾驶汽车之类的技术上。自驾车可能明年无法普及,10年内无法普及,要普及可能需要50年,但重点是,在整个普及过程中,技术会不断进步,会变得越来越灵活和安全,与我们的交通运输网络的组织形式更加兼容。现在的问题是,人们太着急了,过分期待新技术尽快到来,其实假以时日,新技术总会到来的。

参考链接:

https://www.theverge.com/2018/10/16/17985168/deep-learning-revolution-terrence-sejnowski-artificial-intelligence-technology


本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-10-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 新智元 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
大咖 | 《深度学习革命》作者:人们对AI概念的理解存在偏差
对基本概念的误解必然导致对人工智能的错误解读。因此“杀手AI”、“机器人使我们过时”等话题便应运而生。
大数据文摘
2018/12/05
3860
大咖 | 《深度学习革命》作者:人们对AI概念的理解存在偏差
直播 | “深度学习”到底是什么?这篇文章讲明白了
随着阿尔法狗、无人驾驶、智能翻译的横空出世,人工智能这个已经存在60多年的词语,仿佛一夜之间重新成为热词。同时被科技圈和企业界广泛提及的还有机器学习、深度学习、神经网络…… 但事实是,如此喧嚣热烈的气氛之下,大部分人对这一领域仍是一知半解。
量子位
2019/04/24
4500
直播 | “深度学习”到底是什么?这篇文章讲明白了
深度学习进化编年大事记
安妮 编译自 Import.io官方博客 量子位出品 | 公众号 QbitAI 本文作者Andrew Fogg,可视化网页抓取网站Import.io的联合创始人。这篇文章阐明了人工智能、机器学习与深度
量子位
2018/03/28
1.3K0
深度学习进化编年大事记
2018图灵奖公布!Hinton、Bengio、LeCun深度学习三巨头共享
据官方公告介绍,因三位巨头在深度神经网络概念和工程上的突破,使得 DNN 成为计算的一个重要构成,从而成为 2018 年图灵奖得主。
机器之心
2019/04/29
9250
2018图灵奖公布!Hinton、Bengio、LeCun深度学习三巨头共享
刚刚,深度学习“三巨头”共同斩获2018图灵奖!
当地时间3月27日,美国计算机协会(ACM)宣布,把2018年的图灵奖(Turing Award)颁给人工智能科学家Yoshua Bengio,Geoffrey Hinton和Yann LeCun,以表彰他们为当前人工智能的繁荣发展所奠定的基础。
大数据文摘
2019/04/26
9800
刚刚,深度学习“三巨头”共同斩获2018图灵奖!
读书笔记之《深度学习-智能时代的核心驱动力量》
《深度学习》这本书由[美]特伦斯·谢诺夫斯基(Terrence Sejnowski)撰写,详细探讨了深度学习的起源、发展及其对社会的影响。全书分为三个部分,共18章,涵盖了从智能重新构想到技术与科学影响的广泛主题。
AIGC部落
2024/12/19
2180
读书笔记之《深度学习-智能时代的核心驱动力量》
专访NIPS主席:如何保证论⽂评审的公平性?| 人物志
作为人工智能领域顶会 NIPS(Conference and Workshop on Neural Information Processing Systems, 更名为 NeurIPS)的主席,Terrence Sejnowski(特伦斯 · 谢诺夫斯基)是全球人工智能十大科学家之一、深度学习先驱及奠基者,亲历了深度学习在 20 世纪 70 年代到 90 年代的寒冬。但他和一众开拓者,利用大数据和不断增强的计算能力,终于在神经网络算法上取得重大突破,实现了人工智能井喷式的发展。
AI科技大本营
2019/05/15
7380
专访NIPS主席:如何保证论⽂评审的公平性?| 人物志
深度学习撞墙了
点击 机器学习算法与Python学习 ,选择加星标 精彩内容不迷路 机器之心编译 早在 2016 年,Hinton 就说过,我们不用再培养放射科医生了。如今几年过去,AI 并没有取代任何一位放射科医生。问题出在哪儿? 近年来,AI 在大数据、大模型的深度学习之路上一路狂奔,但很多核心问题依然没有解决,比如如何让模型具备真正的理解能力。在很多问题上,继续扩大数据和模型规模所带来的收益似乎已经没有那么明显了。 在 Robust.AI 创始人、纽约大学名誉教授 Gary Marcus 看来,这预示着深度学习(
昱良
2022/03/14
3310
[译]迈向下一代人工智能:催化神经人工智能革命
原文:[2210.08340] Toward Next-Generation Artificial Intelligence: Catalyzing the NeuroAI Revolution (arxiv.org)
AXYZdong
2022/10/31
6660
深度学习“奠基人”科伦斯:人脑中的一片黑暗才是“黑匣子”
如果说谁有资格谈论目前正在进行的人工智能革命,特伦斯·谢诺夫斯基(Terry Sejnowski)无疑是其中一个,特伦斯是20世纪80年代挑战构建人工智能主流方法的重要研究人员之一。
科技云报道
2022/04/15
3400
深度学习“奠基人”科伦斯:人脑中的一片黑暗才是“黑匣子”
深度学习(deep learning)发展史
源 | 小象 本文节选自人民邮电出版社最新出版的 AI 圣经《深度学习DEEP LEARNING[1]》。《深度学习DEEP LEARNING[2]》英文版由美国麻省理工学院 MIT 出版社于 2016 年 12 月推出,一经出版就风靡全球。《深度学习DEEP LEARNING[3]》的一大特点是介绍深度学习算法的本质,脱离具体代码实现给出算法背后的逻辑,不写代码的人也完全可以看。 由深度学习领域三位前沿、权威的专家 Ian Goodfellow、Yoshua Bengio 和 Aaron Courvill
昱良
2018/04/08
1.1K0
深度学习(deep learning)发展史
深度学习简史
深度学习可以追溯到20世纪40年代。深度学习看似是一个全新的领域,最不过因为在目前流行的前几年它还是相对冷门的,同时也因为它被赋予了许多不同的名称(其中大部分已经不再使用),最近才成为众所周知的“深度学习”。这个研究领域已经更换了很多名称,它反映了不同的研究人员和不同观点的影响。一般认为,迄今为止深度学习已经经历了3次发展浪潮:20世纪40年代到60年代,深度学习的雏形已经出现在控制论(cybeinetics)中;20世纪80年代到90年代,深度学习表现为连接主义(connectionsm);直到2006年,才真正以深度学习之名复兴。
狼啸风云
2019/09/18
1.4K0
深度学习简史
深度学习鼻祖杰夫·辛顿及巨头们的人才抢夺战
在过去的三十年,深度学习运动一度被认为是学术界的一个异类,但是现在, Geoff Hinton(如下图1)和他的深度学习同事,包括纽约大学Yann LeCun和蒙特利尔大学的Yoshua Bengio,在互联网世界受到前所未有的关注。Hinton是加拿大多伦多大学教授和研究员,目前就职于Google,他利用深度学习技术来提高语音识别、图像标签以及无数其他的在线工具,LeCun在Facebook做类似的工作。当下人工智能在微软、IBM以及百度和许多其它公司受到极大的关注。 我非常兴奋,我们发现一种可以使神经网
CSDN技术头条
2018/02/07
1.2K0
深度学习鼻祖杰夫·辛顿及巨头们的人才抢夺战
Yann LeCun“隔纸对话”黄铁军:图灵机上的深度学习能模拟世界吗?
上述言论每一句都毫不留情,透着耿直的味道。他的推特,也早就成了AI圈吃瓜群众的快乐源泉。
AI科技评论
2021/09/16
5430
说说图灵奖的深度学习「三教父」惊世贡献
2019年3月27日 ——ACM 宣布,深度学习之父 Yoshua Bengio , Yann LeCun 以及 Geoffrey Hinton 获得了2018年的图灵奖,被称为“计算机领域的诺贝尔奖”。
用户1737318
2019/04/30
7600
说说图灵奖的深度学习「三教父」惊世贡献
《财富》AI 革命:为什么要学习深度学习
让我们从满目的选举新闻和公司小道消息中抽身出来,思考一下大多数人思考得不够的一件事:技术将怎样改变我们的生活?很多CEO告诉我,他们最害怕的是被从未想过是竞争对手的竞争对手出其不意地打击,使用他们从未想过的技术和商业模式威胁他们的生意,让他们落后于时代。这是现在的一大挑战——想象一下,随着技术的进步越来越快,还有哪些能成为可能。 这就是为什么我强烈建议你阅读 Roger Parloff 有关深度学习的封面故事,了解深度学习正在如何改变我们的生活,正如 Roger 所说,它将“很快改变美国的企业”以及全球的企
新智元
2018/03/23
8450
Tomaso Poggio:深度学习需要从炼金术走向化学
记者 | 周翔 AI科技大本营1月28日消息,《麻省理工科技评论》新兴科技峰会EmTech China在北京召开,营长也受邀参加,会上有多位人工智能领域的重磅大佬出没,Tomoso Poggio 教授就是其中一位。 说起 Tomoso Poggio ,也许很多人不太熟悉,但他的几个学生都已经名满天下。比如:DeepMind 创始人、Alpha Go 之父 Demis Hassabis;艾伦人工智能研究所首席科学家 Christof Koch;Mobileye 创始人兼 CTO Amnon Shashua
AI科技大本营
2018/04/26
6950
Tomaso Poggio:深度学习需要从炼金术走向化学
【Science AI特辑】变革了人类社会的基础科学,正在遭遇AI革命
【新智元导读】 7月7日,Science发布最新一期杂志,本期为 AI 特辑。人工智能本身是一门科学,现在,它也在变革科学。《Science》以AI在科学研究中的角色为主题,制作了AI 特辑。所介绍的研究包括,AI 在物理学、天文学、生物学习、社会学等领域的巨大应用价值和潜力。同时,Science 还提供了一张AI术语表,对AI领域常见的名字,比如生成对抗网络、迁移学习等进行定义。AI 在行动。 现代社会,科学是基石之一。科学的进展支撑了人类的进步,从蒸汽机到电再到汽车火箭与飞机,以及现在的信息技术以及人
新智元
2018/03/27
6700
【Science AI特辑】变革了人类社会的基础科学,正在遭遇AI革命
【Science】超越深度学习300倍, Vicarious发布生成视觉模型,LeCun批“这就是AI炒作的教科书”
【新智元导读】最近大家都在探索“超越深度学习”的方法,“美国版DeepMind” Vicarious 近日在Science上发布的一项研究,使用不同于深度学习的方法,将数据使用效率提升了300多倍,“对于未来的通用人工智能有重要意义”。该研究称,使用这种新的技术,他们攻破了网站常见的验证码防御,相当于通过了“反向图灵测试”。LeCun对这家公司和他们的研究提出了尖锐的批评,说“这是AI炒作教科书式的例子”。不过,支持Vicarious 的人可不少:马斯克、扎克伯格和贝佐斯都是其投资人。 总部位于旧金山的人工
新智元
2018/03/21
9310
【Science】超越深度学习300倍, Vicarious发布生成视觉模型,LeCun批“这就是AI炒作的教科书”
戴琼海:深度学习遭遇瓶颈,全脑观测启发下一代AI算法
8月29日至30日,主题为“智周万物”的2020年中国人工智能大会(CCAI 2020)在位于江苏南京的新加坡·南京生态科技岛举办。
AI科技评论
2020/09/04
1.1K0
推荐阅读
相关推荐
大咖 | 《深度学习革命》作者:人们对AI概念的理解存在偏差
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档