前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >利用AI技术去除图像水印

利用AI技术去除图像水印

作者头像
数据森麟
发布于 2019-09-28 13:20:27
发布于 2019-09-28 13:20:27
3.9K0
举报
文章被收录于专栏:数据森麟数据森麟

作者简介:李翔,国内某互联网大厂AI民工,前携程酒店图像技术负责人,主导并参与一系列图像智能化算法的研发与落地工作。在ICCV和CVPR等学术会议及国际期刊上发表论文十余篇。

写在前面

水印作为一种保护版权的有效方式被广泛地应用于海量的互联网图像,针对水印的各种处理显得越来越重要,比如水印的检测和水印的去除与反去除。在这里我们和大家分享一下业余期间在水印智能化处理上的一些实践和探索,希望可以帮助大家在更好地做到对他人图像版权保护的同时,也能更好地防止自己的图像被他人滥用。

我们大家在日常生活中如果下载和使用了带有水印的互联网图像,往往既不美观也可能会构成侵权。为了避免使用带有水印的图像带来的各种影响,最直接的做法就是将带有水印的图像找出来丢弃不用,此外还有一种不推荐的做法就是去掉图像上的水印后再使用。

接下来我们将会围绕上述两种大家常见的做法展开,首先介绍如何利用深度学习技术快速搭建一个水印检测器,实现水印的自动检测,同时我们还会进一步展示在水印检测的基础上如何利用深度学习技术设计一个水印去除器,自动将图像上的水印去除。

一个包罗万象的水印数据集

无论是搭建水印检测器或是水印去除器,都需要海量水印图像作为数据基础。然而现实中并没有直接可以使用的水印图像数据集。因此,我们的首要任务是构建一个水印图像数据集。首先我们要收集各式各样的水印,为了保证后续模型良好的泛化性能,水印的种类要尽可能的多,水印样式也要尽可能的丰富。

我们一共收集了80种来自于公司、组织和个人的水印,包括了中文、英文和logo等不同样式。接下来就是制作带水印的图像,为了保证图像数据的一般性,我们将公开的PASCAL VOC 2012数据集的图像作为原始的无水印图像,然后利用图像处理工具将收集的80种水印以随机的大小、位置和透明度打在原始图像上,同时记录下水印的位置信息,从而得到第一个大规模的水印图像数据集。

水印数据集的80%被划分为训练集,剩余的20%被划分为测试集,为了适应现实场景中需要机器自动检测和去除从未见过的水印的需求,我们确保训练集中的水印不会出现在测试集中,这样可以很好地模拟现实生活中的使用场景。现在水印图像数据集已经准备就绪,接下来就是如何去搭建水印检测器和去除器。

能够一眼看穿各类水印的检测器

水印在图像中的视觉显著性很低,具有面积小,颜色浅,透明度高等特点,带水印图像与未带水印图像之间的差异往往很小,区分度较低。为了构建一个有效的水印检测器,我们将图像水印检测问题转化为一种特殊的单目标检测任务,即判断图像中是否有水印这一单目标存在。

当前基于深度学习的目标检测模型有很多,可以分为以Faster R-CNN为代表的两阶段目标检测算法和以YOLO和RetinaNet等为代表的单阶段目标检测算法。前者是先由算法生成一系列待检测目标的候选框,再通过卷积神经网络进行候选框的分类;后者则不用产生候选框,直接将目标边框定位的问题转化为回归问题处理。一般来说单阶段的算法在检测速度上会更快,但检测精度上会有所下降。我们在这里分别基于Faster R-CNN、YOLOv2和RetinaNet这三种目标检测算法来搭建水印检测器,从对比的结果来看,三种方法都展现了令人满意的检测效果,其中以RetinaNet最优。

为了更加直观地展示我们搭建的基于RetinaNet的水印检测器的效果,我们将测试集上的水印检测结果可视化,蓝色的框是实际的水印区域,红色的框是检测器定位的水印区域,从可视化结果可以看出,对于未出现在训练集中的水印,我们的水印检测器依然可以一眼就看穿。有了这样一款水印检测器,我们就可以在海量图像中快速又准确地检测出带水印的图像。

往前走一步:从检测到去除

如果只是利用AI来自动检测水印,是不是总感觉少了点什么?接下来我们在水印检测的基础上往前再走一步,利用AI实现水印的自动去除。因为水印在图像上的面积较小,所以直接对整幅图像进行水印去除显得过于粗暴,也会严重拖慢去除速度。针对这种情况我们结合水印检测设计了更贴合实际操作的水印处理流程,我们先通过水印检测器检测出水印区域,然后对水印区域进行水印去除操作。

水印去除问题可以看作是一个从图像到图像的转换问题,即将带水印的图像转换为无水印的图像。这里我们使用全卷积网络来搭建水印去除器,实现这种图像到图像的转换。全卷积网络的输入是带水印的图像区域,经过多层卷积处理后输出无水印的图像区域,我们希望网络输出的无水印图像能够和原始的无水印图像尽可能的接近。

为了尽可能提升网络输出无水印图像的质量,我们采用U-net结构替换了传统的编解码器结构,将输入信息添加到输出中,从而尽可能保留了图像的背景信息。同时我们采用感知损失(Perceptual Loss)和一范数损失(L1 Loss)相结合的方式替换传统的均方误差损失(MSE Loss),使输出的无水印图像在细节和纹理上能够更贴近原图。

我们将水印去除器在测试集上的一些去水印效果可视化,左列是输入的水印区域,右列是输出的无水印区域。从可视化的结果可以看出对未知水印的去除效果还是不错的。

写在最后

针对水印的各种处理一直是研究的热点,也吸引了越来越多的关注。本文介绍了如何通过当前流行的深度学习技术来搭建水印的检测器和去除器,实现对水印的智能处理。

在后续的文章中,我们会进一步介绍一种更强大的水印去除器,也会提出一些对水印反去除的思考。值得注意的是,版权保护是大家一直要坚持的事情,水印去除的研究目的更多是为了通过攻击水印来验证其是否有效,从而促进水印反去除能力的提升。保护版权,AI有责

一些资料

[1] Large-scale visible watermark detection and removal with deep convolutional networks

[2] Focal loss for dense object detection

[3] U-net: Convolutional networks for biomedical image segmentation

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-05-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据森麟 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
目标检测论文解读之RCNN
最近准备开始认真的梳理一下目标检测的相关算法,组合成一个目标检测算法系列。之前看到了一张特别好的目标检测算法分类的甘特图,但忘记是哪里的了,要是原始出处请提醒我标注。
BBuf
2019/12/04
7030
目标检测论文解读之RCNN
目标检测综述
这篇综述是我统计信号处理的作业,在这里分享一下,将介绍计算机视觉中的目标检测任务,论述自深度学习以来目标检测的常见方法,着重讲yolo算法,并且将yolo算法与其他的one-stage以及two-stage方法进行比较。
努力努力再努力F
2019/03/11
1.1K0
目标检测综述
基于 FPGA 及深度学习的人脸检测系统设计
新冠病毒的肆虐让整个 2020 年笼罩在恐慌之中,戴口罩成了人们外出必备 的“新日常”。新冠病毒主要通过飞沫传播和接触传播,正确选择佩戴口罩,可有效阻隔病毒传播。但在人流量庞大的商圈、车站等场所,仍有许多人拒绝佩戴口罩。若能在这些场所进行当前人群口罩检测,则能有效避免冠状病毒的传播。
FPGA技术江湖
2025/02/05
2150
基于 FPGA 及深度学习的人脸检测系统设计
从锚点到关键点,最新的目标检测方法发展到哪了
目标检测是计算机视觉领域中的一个基础视觉识别问题,在近几十年得到了广泛研究。视觉目标检测即在给定图像中找出属于特定目标类别的对象及其准确位置,并为每个对象实例分配对应的类别标签。
算法工程师之路
2019/08/20
9460
从锚点到关键点,最新的目标检测方法发展到哪了
被垃圾分类逼疯?AI或许能拯救你
垃圾分类可以更好地保护我们的环境卫生,为了让大家能够正确对垃圾进行分类,官方发布了垃圾分类指南,列举了每种类别对应的常见垃圾,大家可以对照着进行分类投放。此外,脑洞大开的网友们也另辟蹊径,提供了各种有意思的分类思路。
IT阅读排行榜
2019/07/09
7590
被垃圾分类逼疯?AI或许能拯救你
9种深度学习算法简介
导读:从算法处理的流程来划分,基于深度学习的目标检测算法可分为两阶段(Two-Stage)算法和一阶段(One-Stage)算法,两阶段算法需要先进行候选框的筛选,然后判断候选框是否框中了待检测目标,并对目标的位置进行修正;一阶段算法没有筛选候选框的过程,而是直接回归目标框的位置坐标和目标的分类概率。
IT阅读排行榜
2022/01/20
3.7K0
9种深度学习算法简介
SLBR通过自校准的定位和背景细化来去除可见的水印
本文简要介绍了论文“Visible Watermark Removal via Self-calibrated Localization and Background Refinement ”的相关工作。在图像上叠加可见的水印,为解决版权问题提供了一种强大的武器。现代的水印去除方法可以同时进行水印定位和背景恢复,这可以看作是一个多任务学习问题。然而,现有的方法存在水印检测不完整和恢复背景的纹理质量下降的问题。因此,作者设计了一个双阶段多任务网络来解决上述问题。粗度阶段由水印分支和背景分支组成,其中水印分支对粗略估算的掩膜进行自校准,并将校准后的掩膜传递给背景分支,重建水印区域。在细化阶段,作者整合了多层次的特征来提高水印区域的纹理质量。在两个数据集上的大量实验证明了作者所提出的方法的有效性。
合合技术团队
2023/04/14
6990
SLBR通过自校准的定位和背景细化来去除可见的水印
基于深度学习的目标检测算法面试必备(RCNN~YOLOv5)
目标检测算法主要包括:【两阶段】目标检测算法、【多阶段】目标检测算法、【单阶段】目标检测算法
AI算法与图像处理
2021/05/07
3.8K0
Sparse R-CNN:稀疏框架,端到端的目标检测(附源码)
目前目标检测成熟的算法都是基于Dense prior(密集的先验,比如anchors、reference points),但密集的先验存在很多问题:1)会检测出很多相似的结果,需要后处理(比如NMS)来过滤;2)many-to-one label assignment 问题(作者描述为 many-to-one 正负样本分配),猜测意思是我们在设置pred和gt时,一般不是一对一的关系,可能是有多个preds,看看哪个与gt更符合;3)检测结果与先验的关系非常密切(anchors的数量、大小,reference points的密级程度、proposal生成的数量)。
计算机视觉研究院
2021/07/09
1.4K0
从这个玩转图片水印的“神应用”,看懂生成对抗网络的前世今生
导读:当前互联网飞速发展,越来越多的公司、组织和个人都选择在网上展示和分享图像。为了保护图像版权,大家都会选择在图像上打上透明或者半透明的水印。随着水印被广泛地使用,针对水印的各种处理技术也在不断发展,如何有效去除图像上的水印引发了越来越多人的研究兴趣。
IT阅读排行榜
2019/06/18
8650
从这个玩转图片水印的“神应用”,看懂生成对抗网络的前世今生
快乐学AI系列——计算机视觉(3)目标检测
目标检测是计算机视觉领域中的一个重要问题,它旨在识别图像中的特定物体并确定其位置。目标检测在许多应用领域中都有广泛的应用,如智能交通、安全监控、医学影像分析等。
MATRIX.矩阵之芯
2023/03/30
7850
快乐学AI系列——计算机视觉(3)目标检测
YoloV8改进策略:Block改进|RFE模块|即插即用
本文介绍了一种基于YOLOv5的人脸检测方法,命名为YOLO-FaceV2。该方法旨在解决人脸检测中的尺度变化、简单与困难样本不平衡以及人脸遮挡等问题。通过引入一系列创新模块和损失函数,YOLO-FaceV2在WiderFace数据集上取得了优异的表现,特别是在小物体、遮挡和困难样本的检测上。
AI浩
2024/10/31
4940
YoloV8改进策略:Block改进|RFE模块|即插即用
目标检测算法之RetinaNet(引入Focal Loss)
今天来介绍一下目标检测算法中RetinaNet,这篇论文是CVPR2018的作品,Kaiming He大神也是作者之一,同时这篇论文提出的Focal Loss也对工程上训练更好的目标检测模型做出了很大贡献,所以我们尝试理解一下这篇论文的思想。论文地址为:https://arxiv.org/pdf/1708.02002.pdf
BBuf
2019/12/04
2.4K0
目标检测算法之RetinaNet(引入Focal Loss)
干货 | 基于深度学习的目标检测算法综述(一)
目标检测(Object Detection)是计算机视觉领域的基本任务之一,学术界已有将近二十年的研究历史。近些年随着深度学习技术的火热发展,目标检测算法也从基于手工特征的传统算法转向了基于深度神经网络的检测技术。从最初 2013 年提出的 R-CNN、OverFeat,到后面的 Fast/Faster R-CNN、SSD、YOLO 系列,再到 2018 年最近的 Pelee。短短不到五年时间,基于深度学习的目标检测技术,在网络结构上,从 two stage 到 one stage,从 bottom-up only 到 Top-Down,从 single scale network 到 feature pyramid network,从面向 PC 端到面向手机端,都涌现出许多好的算法技术,这些算法在开放目标检测数据集上的检测效果和性能都很出色。
AI科技评论
2018/08/21
8670
干货 | 基于深度学习的目标检测算法综述(一)
图像处理之目标检测入门总结
本文首先介绍目标检测的任务,然后介绍主流的目标检测算法或框架,重点为Faster R-CNN,SSD,YOLO三个检测框架。本文内容主要整理自网络博客,用于普及性了解。
公众号机器学习与AI生成创作
2020/12/08
6970
图像处理之目标检测入门总结
美团如何基于深度学习实现图像的智能审核?
AI(人工智能)技术已经广泛应用于美团的众多业务,从美团App到大众点评App,从外卖到打车出行,从旅游到婚庆亲子,美团数百名最优秀的算法工程师正致力于将AI技术应用于搜索、推荐、广告、风控、智能调度、语音识别、机器人、无人配送等多个领域,帮助美团数亿消费者和数百万商户改善服务和体验,帮大家吃得更好,生活更好。
美团技术团队
2019/03/22
2.1K0
美团如何基于深度学习实现图像的智能审核?
目标检测究竟发展到了什么程度? | CVHub带你聊一聊目标检测发展的这22年
目标检测领域发展至今已有二十余载,从早期的传统方法到如今的深度学习方法,精度越来越高的同时速度也越来越快,这得益于深度学习等相关技术的不断发展。本文将对目标检测领域的发展做一个系统性的介绍,旨在为读者构建一个完整的知识体系架构,同时了解目标检测相关的技术栈及其未来的发展趋势。由于编者水平有限,本文若有不当之处还请指出与纠正,欢迎大家评论交流!
AIWalker
2021/07/05
3.3K0
目标检测究竟发展到了什么程度? | CVHub带你聊一聊目标检测发展的这22年
融合点云与图像的环境目标检测研究进展
在数字仿真技术应用领域,特别是在自动驾驶技术的发展中,目标检测是至关重要的一环,它涉及到对周围环境中物体的感知,为智能装备的决策和规划提供了关键信息。
一点人工一点智能
2024/03/22
2K0
融合点云与图像的环境目标检测研究进展
基于深度学习的目标检测算法综述
目标检测的任务是找出图像中所有感兴趣的目标(物体),确定它们的位置和大小,是机器视觉领域的核心问题之一。由于各类物体有不同的外观,形状,姿态,加上成像时光照,遮挡等因素的干扰,目标检测一直是机器视觉领域最具有挑战性的问题。本文将针对目标检测(Object Detection)这个机器视觉中的经典任务进行解析,抛砖引玉。如对文中的内容持不同观点,欢迎到SIGAI公众号发消息给我们,一起探讨!
SIGAI学习与实践平台
2018/08/07
1.4K0
基于深度学习的目标检测算法综述
20年的目标检测大综述(章节2)
今天我们接着上次综述章节1继续来大家来说说,本次主要说说20年内的目标检测,感谢大家的关注与支持。
计算机视觉研究院
2020/03/04
9050
推荐阅读
相关推荐
目标检测论文解读之RCNN
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档