前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Redis简明教程

Redis简明教程

作者头像
Java3y
发布2019-09-24 15:12:20
6830
发布2019-09-24 15:12:20
举报
文章被收录于专栏:Java3y

本文公众号来源:柳树的絮叨叨

作者:SexyCode

Redis是啥?用Redis官方的话来说就是:

Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache and message broker.

Redis是一个开源的、基于内存的数据结构存储器,可以用作数据库、缓存和消息中间件。

What??? 这玩意把数据放在内存,还想当数据库使?为什么是“data structure store”,而不是“data store”?还能用作消息中间件??你这么牛,你咋不上天?

是的,Redis就是这么牛 ( ̄▽ ̄)~*

我们只需从Redis最常用的功能——缓存,开始了解,上面那些问题也就迎刃而解了。

如果你是Redis新手,或者此前从未接触过Redis,那么这篇文章不仅能帮你快速了解Redis的实现原理,还能帮你了解一些架构设计的艺术;如果你是Redis老司机,那么,希望这篇文章能带给你一些新的东西。

1、你会怎样实现一个缓存?

假设让你设计一个缓存,你会怎么做?

相信大家都会想到用Map来实现,就像这样:

String value = map.get("someKey");

if(null == value) {

value = queryValueFromDB("someKey");

}

那用什么Map呢?HashMap、TreeMap这些都线程不安全,那就用HashTable或者ConcurrentHashMap好了。

不管你用什么样的Map,它的背后都是key-value的Hash表结构,目的就是为了实现O(1)复杂度的查找算法,Redis也是这样实现的,另一个常用的缓存框架Memcached也是。

Hash表的数据结构是怎样的呢?相信很多人都知道,这里简单画个图:

简单说,Hash表就是一个数组,而这个数组的元素,是一个链表。

为什么元素是链表?理论上,如果我们的数组可以做成无限大,那么每来一个key,我们都可以把它放到一个新的位置。但是这样很明显不可行,数组越大,占用的内存就越大。

所以我们需要限制数组的大小,假设是16,那么计算出key的hash值后,对16取模,得出一个0~15的数,然后放到数组对应的位置上去。

好,现在key1放到index为2的位置,突然又来了一个key9,刚好他也要放到index为2的位置,那咋办,总不能把人家key1给踢掉吧?所以key1的信息必须存储在一个链表结构里面,这样key9来了之后,只需要把key1所在的链表节点的next,指向key9的链表节点即可。

这样就没问题了吗?想象一下,如果链表越来越长,会有什么问题?

很明显,链表越长,Hash表的查询、插入、删除等操作的性能都会下降,极端情况下,如果全部元素都放到了一个链表里头,复杂度就会降为O(n),也就和顺序查找算法无异了。(正因如此,Java8里头的HashMap在元素增长到一定程度时会从链表转成一颗红黑树,来减缓查找性能的下降)

怎么解决?rehash。

关于rehash,这里就不细讲了,大家可以先了解一下Java HashMap的resize函数,然后再通过这篇文章:A little internal on redis key value storage implementation 去了解Redis的rehash算法,你会惊讶的发现Redis里头居然是两个HashTable。

好,上面带大家从一个及其微观的角度窥视了Redis,下面几个小节,再带大家用宏观的视角去观察Redis。

2、C/S架构

作为Redis用户,我们要怎样把数据放到上面提到的Hash表里呢?

我们可以通过Redis的命令行,当然也可以通过各种语言的Redis API,在代码里面对Hash表进行操作,这些都是Redis客户端(Client),而Hash表所在的是Redis服务端(Server),也就是说Redis其实是一个C/S架构。

显然,Client和Server可以是在一台机器上的,也可以不在:

如果你想玩一下Redis,又不想自己搭建环境,可以试一下这一个非常好玩的网页:Try Redis,你可以按照上面的提示,熟悉Redis的基础命令,感受一下Redis的C/S模式。

值得一提的是,Redis的Server是单线程服务器,基于Event-Loop模式来处理Client的请求,这一点和NodeJS很相似。使用单线程的好处包括:

  • 不必考虑线程安全问题。很多操作都不必加锁,既简化了开发,又提高了性能;
  • 减少线程切换损耗的时间。线程一多,CPU在线程之间切来切去是非常耗时的,单线程服务器则没有了这个烦恼;

当然,单线程服务器最大的问题自然是无法充分利用多处理器,不过没关系,别忘了现在的机器很便宜。请继续往下看。

3、集群

好,现在我们已经知道了Redis是一个C/S架构的框架,那就让我们开始用Redis来缓存信息,缓解数据库的压力吧!

我们搭起了这样一个框架,一台客户端,一台Redis缓存服务器:

一开始风和日丽,系统运行良好。

后来,我们系统中使用Redis的客户端越来越多,变成了这样:

这带来了两个问题:

  • Redis内存不足:随着使用Redis的客户端越来越多,Redis上的缓存数据也越来越大,而一台机器的内存毕竟是有限的,放不了那么多数据;
  • Redis吞吐量低:客户端变多了,可Redis还是只有一台,而且我们已经知道,Redis是单线程的!这就好比我开了一家饭店,一开始每天只有100位客人,我雇一位服务员就可以,后来生意好了,每天有1000位客人,可我还是只雇一位服务员。一台机器的带宽和处理器都是有限的,Redis自然会忙不过来,吞吐量已经不足以支撑我们越来越庞大的系统。

分析完问题,解决思路也就再清晰不过了——集群。一台Redis不够,那就再加多几台!

客户端的请求会通过负载均衡算法(通常是一致性Hash),分散到各个Redis服务器上。 通过集群,我们实现了两个特性:

  • 扩大缓存容量;
  • 提升吞吐量;

解决了上面提到的两个问题。

4、主从复制

好,现在我们已经把Redis升级到了集群,真可谓效果杠杠的,可运行了一段时间后,运维又过来反馈了两个问题:

  • 数据可用性差:如果其中一台Redis挂了,那么上面全部的缓存数据都会丢失,导致原来可以从缓存中获取的请求,都去访问数据库了,数据库压力陡增。
  • 数据查询缓慢:监测发现,每天有一段时间,Redis 1的访问量非常高,而且大多数请求都是去查一个相同的缓存数据,导致Redis 1非常忙碌,吞吐量不足以支撑这个高的查询负载。

问题分析完,要想解决可用性问题,我们第一个想到的,就是数据库里头经常用到的Master-Slave模式,于是,我们给每一台Redis都加上了一台Slave:

通过Master-Slave模式,我们又实现了两个特性:

  • 数据高可用:Master负责接收客户端的写入请求,将数据写到Master后,同步给Slave,实现数据备份。一旦Master挂了,可以将Slave提拔为Master;
  • 提高查询效率:一旦Master发现自己忙不过来了,可以把一些查询请求,转发给Slave去处理,也就是Master负责读写或者只负责写,Slave负责读;

为了让Master-Slave模式发挥更大的威力,我们当然可以放更多的Slave,就像这样:

可这样又引发了另一个问题,那就是Master进行数据备份的工作量变大了,Slava每增加一个,Master就要多备份一次,于是又有了Master/slave chains的架构:

没错,我们让Slave也有自己的Slave,有点像古代的分封制。

这样最顶层的Master的备份压力就没那么大了,它只需要备份两次,然后让那它底下的那两台Slave再去和他们的Slave备份。

关于Master/slave chains,大家可以参考这篇文章 RedisLab Master/slave chains

5、Redis没那么简单

这篇文章只是带大家逛一逛Redis的庄园,让大家从微观到宏观,对Redis有一个初步的了解。

事实上,Redis内部要处理的问题还有很多:

  • 数据结构。文章一开头提到了,Redis不仅仅是数据存储器,而是数据结构存储器。那是因为Redis支持客户端直接往里面塞各种类型的数据结构,比如String、List、Set、SortedSet、Map等等。你或许会问,这很了不起吗?我自己在Java里写一个HashTable不也可以放各种数据结构?呵呵,要知道你的HashTable只能放Java对象,人家那可是支持多语言的,不管你的客户端是Java还是Python还是别的,都可以往Redis塞数据结构。这一点也是Redis和Memcached相比,非常不同的一点。当然Redis要支持数据结构存储,是以牺牲更多内存为代价的,正所谓有利必有弊。关于Redis里头的数据结构,大家可以参考:Redis Data Types
  • 剔除策略。缓存数据总不能无限增长吧,总得剔除掉一些数据,好让新的缓存数据放进来吧?这就需要LRU算法了,大家可以参考:Redis Lru Cache
  • 负载均衡。用到了集群,就免不了需要用到负载均衡,用什么负载均衡算法?在哪里使用负载均衡?这点大家可以参考:Redis Partitioning
  • Presharding。如果一开始只有三台Redis服务器,后来发现需要加多一台才能满足业务需要,要怎么办?Redis提供了一种策略,叫:Presharding
  • 数据持久化。如果我的机器突然全部断电了,我的缓存数据还能恢复吗?Redis说,相信我,可以的,不然我怎么用作数据库?去看看这个:Redis Persistence
  • 数据同步。这篇文章里提到了主从复制,那么Redis是怎么进行主从复制的呢?根据CAP理论,既然我们已经选择了集群,也就是P,分区容忍性,那么剩下那两个,Consistency和Availability只能选择一个了,那么Redis到底是支持最终一致性还是强一致性呢?可以参考:Redis Replication
  • ……

5、参考文献&学习资源

官网:

  • Redis官网(之所以建议看官网,是因为这是一手的学习资料,其他资料都最多只能算二手,一手资料意味着最权威,准确性最高)
  • Try Redis(如果你懒得装环境,这或许是一个不错的选择… )

书籍(可以参考):

  • Redis实战
  • Redis设计与实现
  • Redis开发与运维
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-09-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Java3y 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1、你会怎样实现一个缓存?
  • 2、C/S架构
  • 3、集群
  • 4、主从复制
  • 5、Redis没那么简单
  • 5、参考文献&学习资源
相关产品与服务
云数据库 Redis®
腾讯云数据库 Redis®(TencentDB for Redis®)是腾讯云打造的兼容 Redis 协议的缓存和存储服务。丰富的数据结构能帮助您完成不同类型的业务场景开发。支持主从热备,提供自动容灾切换、数据备份、故障迁移、实例监控、在线扩容、数据回档等全套的数据库服务。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档