前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Pandas可视化综合指南:手把手从零教你绘制数据图表

Pandas可视化综合指南:手把手从零教你绘制数据图表

作者头像
量子位
发布2019-09-24 14:54:21
2.6K0
发布2019-09-24 14:54:21
举报
文章被收录于专栏:量子位

数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。

在数据帧上进行操作的plot()函数只是matplotlib中plt.plot()函数的一个简单包装 ,可以帮助你在绘图过程中省去那些长长的matplotlib代码。

最近,一位来自印度的小哥以2019年世界幸福指数的数据为例,详细讲述了在Pandas中plot()函数的各种参数设置的小技巧,熟练掌握这些技巧后,你也能绘制出丰富多彩的可视化图表。

导入数据

在绘制图形前,我们首先需要导入csv文件:

代码语言:javascript
复制
import pandas as pd
df=pd.read_csv(‘./world-happiness-report-2019.csv’)
df.head(3)

这个csv图标的内容是各个国家按照不同维度评价的幸福指数(数据下载地址见文末):

数据帧中一些列的名称比较冗长,可以重命名使其更加简洁:

代码语言:javascript
复制
df.rename(columns={“Country (region)”: “Country”, “Log of GDP\nper capita”: “Log_GDP_per_capita”, “Healthy life\nexpectancy”:”Health_life_expect”},inplace=True)
df.columns

绘制柱状图、散点图等常见图形

从最近简单的柱状图开始,只统计腐败程度、自由度、宽容度、社会支持等几个维度

代码语言:javascript
复制
%matplotlib tk
df1=df[:5]
df1.plot(‘Country’,[‘Corruption’,’Freedom’,’Generosity’,’Social support’],kind = ‘bar’)

嫌直接写名称太麻烦?没关系,我们也可以用所在列的数字来绘制,比如上述4个列分别为7、6、8、5:

代码语言:javascript
复制
%matplotlib tk
df1=df[:5]
df1.plot(‘Country’,[7,6,8,5],kind = ‘bar’)

在上面的代码中kind = ‘bar’,所以绘制的图形是柱状图,如果我们把参数改成kind = ‘line’,画出的就是线状图

代码语言:javascript
复制
df1=df[:5]
df1.plot(‘Country’,[‘Corruption’,’Freedom’,’Generosity’,’Social support’],kind = ‘line’)

同样的,如果把参数改成kind = ‘line’,还能绘制出箱形图:

代码语言:javascript
复制
df[:5].plot(x=’Country’,kind=’box’)

对于散点图,设置kind=’scatter’,绘制出腐败程度与自由度之间的关系,用color=’R’将点定义为红色:

代码语言:javascript
复制
df.plot(x=’Corruption’,y=’Freedom’,kind=’scatter’,color=’R’)

此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。

代码语言:javascript
复制
from pandas.plotting import table
df1=df[:5]
df1=df.loc[:5,[‘Country (region)’,’Corruption’,’Freedom’,’Generosity’,’Social support’]]
ax=df1.plot(‘Country (region)’,[‘Corruption’,’Freedom’,’Generosity’,’Social support’], kind = ‘bar’, title =’Bar Plot’,legend=None)
table(ax, np.round(df1.describe(), 2),loc=’upper right’)

坐标轴的设置

取值范围

使用xlim和ylim两个参数可设置x和y轴的范围。在折线图中,我们要将x轴设置为0到20,y限制为从0到100。

代码语言:javascript
复制
df1=df[:20]
df1[‘Freedom’].plot(kind=’line’,xlim=(0,20),ylim=(0,100))

x、y轴刻度

有时候坐标轴上的刻度并不理想,我们希望在上面标上我们喜欢的数值。

比如对于x轴,我们想要标上0、10、15和20几个值;对于y轴,我们想要标上0、50、70、100几个值,可以在xticksyticks参数中悉数列出。

代码语言:javascript
复制
df[:20][‘Freedom’].plot(kind=’line’,xlim=(0,20),ylim=(0,100),color=’red’,xticks=([0,10,15,20]),yticks=([0,50,70,100]), title = ‘xticks’)

但是用列表来制定坐标刻度的方法,在数值太多的时候就比较麻烦了,因此我们还能通过指定刻度间隔的方法来绘制坐标轴,比如指定x轴间隔是1,y轴间隔是10:

代码语言:javascript
复制
df[:20][‘Freedom’].plot(kind=’line’,xlim=(0,20),ylim=(0,100),color=’red’,xticks=([w1 for w in range(20)]),yticks=([w10 for w in range(40)]))

如果我们不希望在坐标轴上看到数字,而是想要设置标签。我们还可以将x轴标签更改为文本标签“低、中、高”这种样式。

代码语言:javascript
复制
ax=df[:20][‘Freedom’].plot(kind=’line’,xlim=(0,20),ylim=(0,100),color=’red’,xticks=([0,10,20]),yticks=([w*30 for w in range(40)]))
ax.set_xticklabels([‘Low’,’Med’,’High’])

对数坐标

如果数据的跨度范围非常大,横跨好几个数量级,那么用线性坐标就无法很好地展示数据。这时候我们需要用到对数坐标,设置方法是将logx或者logy的值设置为Ture

如果我们只想设置x轴为对数坐标,y轴仍保持线性坐标,那么

代码语言:javascript
复制
df[:20][‘Freedom’].plot(kind=’line’,xlim=(0,1000),ylim=(0,100),color=’red’,logx=True)

其他高阶用法

可以使用stacked参数来绘制带有条形图的堆叠图。在这里,我们绘制堆叠的水平条,stacked设置为True。

将grid参数设置为True,可以给图表加入网格。

有了subplot参数还可以绘制子图,根据需要指定行数和列数以及绘图的数量。

在上面的子图中,我们没有给子图添加标题。当subplot 设置为True 时,在设置一组title的值,即可在列表上方加入标题。

原文链接: https://kanoki.org/2019/09/16/dataframe-visualization-with-pandas-plot/

表格下载地址: https://www.kaggle.com/PromptCloudHQ/world-happiness-report-2019/version/1

作者系网易新闻·网易号“各有态度”签约作者

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-09-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 量子位 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 导入数据
  • 绘制柱状图、散点图等常见图形
  • 坐标轴的设置
    • 取值范围
      • x、y轴刻度
        • 对数坐标
        • 其他高阶用法
        相关产品与服务
        腾讯云 BI
        腾讯云 BI(Business Intelligence,BI)提供从数据源接入、数据建模到数据可视化分析全流程的BI能力,帮助经营者快速获取决策数据依据。系统采用敏捷自助式设计,使用者仅需通过简单拖拽即可完成原本复杂的报表开发过程,并支持报表的分享、推送等企业协作场景。
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档