前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Kafka笔记—可靠性、幂等性和事务

Kafka笔记—可靠性、幂等性和事务

作者头像
luozhiyun
发布2019-09-10 20:49:56
1.1K0
发布2019-09-10 20:49:56
举报
文章被收录于专栏:luozhiyun的技术学习

这几天很忙,但是我现在给我的要求是一周至少要出一篇文章,所以先拿这篇笔记来做开胃菜,源码分析估计明后两天应该能写一篇。给自己加油~,即使没什么人看。

可靠性

如何保证消息不丢失

Kafka只对“已提交”的消息(committed message)做有限度的持久化保证。

已提交的消息 当Kafka的若干个Broker成功地接收到一条消息并写入到日志文件后,它们会告诉生产者程序这条消息已成功提交。

有限度的持久化保证 假如一条消息保存在N个Kafka Broker上,那么至少这N个Broker至少有一个存活,才能保证消息不丢失。

丢失数据案例

生产者程序丢失数据

由于Kafka Producer是异步发送的,调用完producer.send(msg)并不能认为消息已经发送成功。

所以,在Producer永远要使用带有回调通知的发送API,使用producer.send(msg,callback)。一旦出现消息提交失败的情况,可以由针对性地进行处理。

消费者端丢失数据

消费者是先更新offset,再消费消息。如果这个时候消费者突然宕机了,那么这条消息就会丢失。

所以我们要先消费消息,再更新offset位置。但是这样会导致消息重复消费。

还有一种情况就是consumer获取到消息后开启了多个线程异步处理消息,而consumer自动地向前更新offset。假如其中某个线程运行失败了,那么消息就丢失了。

遇到这样的情况,consumer不要开启自动提交位移,而是要应用程序手动提交位移。

最佳实现

  1. 使用producer.send(msg,callback)。
  2. 设置acks = all。acks是Producer的参数,代表了所有副本Broker都要接收到消息,该消息才算是“已提交”。
  3. 设置retries为一个较大的值。是Producer的参数,对应Producer自动重试。如果出现网络抖动,那么可以自动重试消息发送,避免消息丢失。
  4. unclean.leader.election.enable = false。控制有哪些Broker有资格竞选分区的Leader。表示不允许落后太多的Broker竞选Leader。
  5. 设置replication.factor>=3。Broker参数,冗余Broker。
  6. 设置min.insync.replicas>1。Broker参数。控制消息至少要被写入到多少个副本才算是“已提交”。
  7. 确保replication.factor>min.insync.replicas。如果两个相等,那么只要有一个副本挂机,整个分区就无法正常工作了。推荐设置成replication.factor=min.insync.replicas+1.
  8. 确保消息消费完成在提交。Consumer端参数enbale.auto.commit,设置成false,手动提交位移。

解释第二条和第六条: 如果ISR中只有1个副本了,acks=all也就相当于acks=1了,引入min.insync.replicas的目的就是为了做一个下限的限制:不能只满足于ISR全部写入,还要保证ISR中的写入个数不少于min.insync.replicas。

幂等性

在0.11.0.0版本引入了创建幂等性Producer的功能。仅需要设置props.put(“enable.idempotence”,true),或props.put(ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG,true)。

enable.idempotence设置成true后,Producer自动升级成幂等性Producer。Kafka会自动去重。Broker会多保存一些字段。当Producer发送了相同字段值的消息后,Broker能够自动知晓这些消息已经重复了。

作用范围:

  1. 只能保证单分区上的幂等性,即一个幂等性Producer能够保证某个主题的一个分区上不出现重复消息。
  2. 只能实现单回话上的幂等性,这里的会话指的是Producer进程的一次运行。当重启了Producer进程之后,幂等性不保证。

事务

Kafka在0.11版本开始提供对事务的支持,提供是read committed隔离级别的事务。保证多条消息原子性地写入到目标分区,同时也能保证Consumer只能看到事务成功提交的消息。

事务性Producer

保证多条消息原子性地写入到多个分区中。这批消息要么全部成功,要不全部失败。事务性Producer也不惧进程重启。

Producer端的设置:

  1. 开启enable.idempotence = true
  2. 设置Producer端参数 transactional.id

除此之外,还要加上调用事务API,如initTransaction、beginTransaction、commitTransaction和abortTransaction,分别应对事务的初始化、事务开始、事务提交以及事务终止。 如下:

代码语言:javascript
复制
producer.initTransactions();
try {
            producer.beginTransaction();
            producer.send(record1);
            producer.send(record2);
            producer.commitTransaction();
} catch (KafkaException e) {
            producer.abortTransaction();
}

这段代码能保证record1和record2被当做一个事务同一提交到Kafka,要么全部成功,要么全部写入失败。

Consumer端的设置: 设置isolation.level参数,目前有两个取值:

  1. read_uncommitted:默认值表明Consumer端无论事务型Producer提交事务还是终止事务,其写入的消息都可以读取。
  2. read_committed:表明Consumer只会读取事务型Producer成功提交事务写入的消息。注意,非事务型Producer写入的所有消息都能看到。
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019-09-07 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 可靠性
    • 如何保证消息不丢失
      • 丢失数据案例
        • 生产者程序丢失数据
      • 消费者端丢失数据
        • 最佳实现
        • 幂等性
        • 事务
          • 事务性Producer
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档