一、谈谈你对 volatile 的理解
volatile是java虚拟机提供的轻量级的同步机制。
有三个特点:
但是JMM ( java内存模型 )规范必须保证:内存可见性,禁止指令重排(有序性),原子性。
但是volatile关键字不能保证原子性,有可能出现写丢失情况。
二、volatile为什么不能保证原子性
它可以保证修改的值立即能更新到主存,其他线程也会捕捉到被修改后的值,那么为什么不能保证原子性呢?
Java中只有对基本类型变量的赋值和读取是原子操作,如i = 1的赋值操作,但是像j = i或者i++这样的操作都不是原子操作,因为他们都进行了多次原子操作,比如先读取i的值,再将i的值赋值给j,两个原子操作加起来就不是原子操作了。
所以,如果一个变量被volatile修饰了,那么肯定可以保证每次读取这个变量值的时候得到的值是最新的,但是一旦需要对变量进行自增这样的非原子操作,就不会保证这个变量的原子性了。
举个栗子: 一个变量i被volatile修饰,两个线程想对这个变量修改,都对其进行自增操作也就是i++,i++的过程可以分为三步,首先获取i的值,其次对i的值进行加1,最后将得到的新值写会到缓存中。线程A首先得到了i的初始值100,但是还没来得及修改,就阻塞了,这时线程B开始了,它也得到了i的值,由于i的值未被修改,即使是被volatile修饰,主存的变量还没变化,那么线程B得到的值也是100,之后对其进行加1操作,得到101后,将新值写入到缓存中,再刷入主存中。根据可见性的原则,这个主存的值可以被其他线程可见。
问题来了,线程A已经读取到了i的值为100,也就是说读取的这个原子操作已经结束了,只有在做读取操作时,发现自己缓存行无效,才会去读主存的值,所以这个可见性来的有点晚,线程A阻塞结束后,继续将100这个值加1,得到101,再将值写到缓存,最后刷入主存,所以即便是volatile具有可见性,也不能保证对它修饰的变量具有原子性。
三、如何解决不能保证原子性问题
在多线程并发访问下,共享变量使用使用 java.util.concurrent.atomic 包下面的 AtomicInteger 可以保证原子性操作,底层使用CAS算法。
public class Sample {
//不指定初始值默认为0
private static AtomicInteger
count = new AtomicInteger(0);
public static void increment() {
//相当于 i++ 操作
count.getAndIncrement();
}
}
四、volatile底层的实现机制?
如果把加入volatile关键字的代码和未加入volatile关键字的代码都生成汇编代码,会发现加入volatile关键字的代码会多出一个lock前缀指令。lock前缀指令实际相当于一个内存屏障,内存屏障提供了以下功能:
五、在什么地方用到 volatile
1. 状态量标记:
int a = 0;
volatile bool flag = false;
public void write() {
a = 2; //1
flag = true; //2
}
public void multiply() {
if (flag) { //3
int ret = a * a;//4
}
}
这种对变量的读写操作,标记为volatile可以保证修改对线程立刻可见。比synchronized,Lock有一定的效率提升。
2. 单例模式的实现,典型的双重检查锁定(DCL):
class Singleton{
private volatile static Singleton instance = null;
private Singleton() {
}
public static Singleton getInstance() {
if(instance==null) {
synchronized (Singleton.class) {
if(instance==null)
instance = new Singleton();
}
}
return instance;
}
}
这是一种懒汉的单例模式,使用时才创建对象,而且为了避免初始化操作的指令重排序,给instance加上了volatile。