前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >POSIT算法的原理–opencv 3D姿态估计[通俗易懂]

POSIT算法的原理–opencv 3D姿态估计[通俗易懂]

作者头像
全栈程序员站长
发布于 2022-11-01 01:50:43
发布于 2022-11-01 01:50:43
1.6K0
举报

大家好,又见面了,我是你们的朋友全栈君。

3D姿态估计-POSIT算法

POSIT算法,Pose from Orthography and Scaling with Iterations, 比例正交投影迭代变换算法:

用于估计物体的3D姿态(相对于镜头的平移和旋转量)。算法正常工作的前提是物体在Z轴方向的“厚度”远小于其在Z轴方向的平均深度,比如距离镜头10米远的一张椅子。

算法流程:

假设待求的姿态,包括旋转矩阵R和平移向量T,分别为

透视投影变换为:

上式中的f是摄像机的焦距,它的具体值并不重要,重要的是f与x和y之间的比例,根据摄像头内参数矩阵的fx和fy可以得到这个比例。实际的运算中可直接令f=1,但是相应的x和y也要按照比例设定。比如,对于内参数为[fx,fy,u0,v0]的摄像头,如果一个像素的位置是(u,v),则对应的x和y应为

设世界坐标系中的一点为(Xw,Yw,Zw),则

有必要再解释一下旋转矩阵R和平移向量T的具体意义:

R的第i行表示摄像机坐标系中的第i个坐标轴方向的单位向量在世界坐标系里的坐标;

R的第i列表示世界坐标系中的第i个坐标轴方向的单位向量在摄像机坐标系里的坐标;

T正好是世界坐标系的原点在摄像机坐标系的坐标,特别的,Tz就代表世界坐标系的原点在摄像机坐标系里的“深度”。

根据前面的假设,物体在Z轴方向的‘厚度’,即物体表面各点在摄像机坐标系中的Z坐标变化范围,远小于该物体在Z轴方向的平均深度。一定要注意,“厚度”和“深度”都是相对于摄像机坐标系的Z轴而言的。当世界坐标系的原点在物体的中心附近时可以认为平均深度就是平移向量T中的Tz分量,即各点的Zc的平均值是Tz,而Zc的变化范围相对于Tz又很小,因此可以认为,Zc始终在Tz附近,Zc≈Tz。

根据这个近似关系,可得

这就是我们的迭代初值。在这种初始状态下,我们假设了物体的所有点在同一个深度上,这时的透视变换就退化为了一个比例正交投影POS。也就是,我们的迭代开始于一个比例正交投影,这也是POSIT算法名字的由来。

我们前面得到了:

由于我们给了w一个估计值,因此可以先将其看做已知量,删掉第三行(这样方程中就少了4个未知量,更方便求解),得到

由于w被看做已知,因此上面的迭代方程可以看做有8个未知量,分别是

给定一对坐标后(一个是世界坐标系的坐标,一个是图像坐标系的坐标,它们对应同一个点),我们就可以得到2个独立的方程,一共需要8个独立方程,因此至少需要给定4对坐标,而且对应的这4个点在世界坐标系中不能共面。为什么不能共面?如果第4个点与前三个点共面,那么该点的“齐次坐标”就可以被其他三个点的“齐次坐标”线性表示,而迭代方程的右侧使用的就是齐次坐标,这样由第四个点得到的方程就不是独立方程了。这里之所以强调“齐次坐标”是因为,只要三个点不共线,所有其他点(即使不共面)的“常规坐标”都可以被这三个点的“常规坐标”线性表示,但“齐次坐标”则要求共面。

OK,假如我们获得了4个不共面的点及其坐标,并通过迭代方程求出了8个未知量。这时我们就可以算出向量sR1和sR2的模长。而由于R1和R2本身都是单位向量,即模长为1。因此我们可以求出s,进而求得R1和R2以及Tz=f/s:

有了R1和R2就可以求出R3,后者为前两个向量的叉积(两两垂直的单位向量)。

至此,整个旋转矩阵R和平移向量T,共12个未知量,就都求出来了。不过,这只是近似值,因为我们一开始时假设了w=1(或Zc=Tz),即物体上所有的点的深度都是Tz。现在我们有了一个近似的转换矩阵,可以利用它为各点计算一个新的深度,这个深度比Tz更准确。新的深度Zc和新的迭代系数w等于:

这时,由于每个点的有不同的深度,他们也就有了不同的迭代系数w。接着,将每个点的新w值代入迭代方程中,重新得到8个方程。由于这一次每个点的w(表征了深度信息)都比上一次迭代时更准确,因此会得到更精确的转换矩阵,而更精确的转换矩阵反过来又能让我们求得各点更精确的深度信息和w。如此往复循环反馈,就可逐步逼近精确解。

openCV里用cvPOSIT()函数实现POSIT迭代,具体的函数用法网上有很多介绍不再重复了。顺带提一下openCV里的另两个函数solvePNP()和cvFindExtrinsicCameraParams2(),这两个函数功能与POSIT类似,也是在已知一组点对应的图像坐标和世界坐标以及摄像头内参数的情况下计算物体的3D姿态,不过与POSIT不同的是,它们不是求近似解,而是直接求精确解。既然可以直接求精确解了,那POSIT估计算法还有什么意义呢?

其实理论上,只要获得3个点的信息,就可以得出旋转矩阵R和平移向量T了:

R和T共有12个未知量,每个点的坐标代入前面的“—原始方程–”中,消去w,可得到2个独立的方程,3个点就可以得到6个线性方程,再加上R自身的正交矩阵特征(每行、每列都是单位向量,模长为1)又可以得到6个独立的方程(非线性),共12个方程。

但实际中,解非线性方程很麻烦,所以openCV中应该是用了其他的优化方法。最无奈地,我们可以找6个点,每个点用“—原始方程–”消去w得到2个线性方程,最终也能得到12个方程,不过由于这种方法的求解过程中直接无视了正交矩阵R本身的特征,最后得到的结果会由于点坐标的测量误差和计算误差而稍微违反R自身的正交矩阵约束,当然这可以通过迭代弥补,但会增加算法的复杂度。可能有人会疑惑,同样是从3行的“—原始方程–”转化成2行的方程,为什么POSIT方法只需要四个点就可以求解,而这里却需要6个点?要知道,这里只是利用线性关系消去了w,但保留了原来第三行中的未知量,因此未知量的数量保持12不变;而POSIT方法中,直接为w选取了一个估计值,并删去了“—原始方程–”的第3行,这样方程中才少了4个未知量只剩下8个,所以利用4个点的坐标才得以求解。

于是,我们大概就能猜到既然有精确求解的算法却还要保留POSIT估计算法的原因了:如果只有少数点的信息(比如4个),又不想求解非线性方程,那就该POSIT上了。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/203591.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年10月23日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
相机标定(Camera calibration)原理、步骤
这已经是我第三次找资料看关于相机标定的原理和步骤,以及如何用几何模型,我想十分有必要留下这些资料备以后使用。这属于笔记总结。
全栈程序员站长
2022/09/01
2.2K0
EPnP:一种复杂度为O(N)的求解PnP问题的方法
在三维视觉中,经常出现的一种情况是:我们已知一组点的三维坐标,和相机拍摄这些点时获取的二维坐标。如何通过这些二位点的坐标,(结合已知的三维坐标信息),确定出相机在世界坐标系中的位姿,即旋转矩阵R和平移向量t?这个问题称作Perspective-n-Point 问题,简称PnP问题。
3D视觉工坊
2020/12/11
3.4K0
EPnP:一种复杂度为O(N)的求解PnP问题的方法
如何通过图像消失点计算相机的位姿?
本文主要是个人在学习过程中的笔记和总结,如有错误欢迎留言指出。也欢迎大家能够通过我的邮箱与博主进行交流或者分享一些文章和技术博客。
点云PCL博主
2022/01/27
4.9K0
如何通过图像消失点计算相机的位姿?
SFM原理简介「建议收藏」
小孔模型成的是倒像,为了表述与研究的方便,我们常常将像面至于小孔之前,且到小孔的距离仍然是焦距f,这样的模型与原来的小孔模型是等价的,只不过成的是正像,符合人的直观感受。 在这种情况下,往往将小孔称作光心(Optical Center)。
全栈程序员站长
2022/06/24
2.5K0
SFM原理简介「建议收藏」
传统相机标定方法解析
本文转自:http://blog.sina.com.cn/s/blog_b364631a0101iopy.html
sofu456
2020/02/18
1.3K0
传统相机标定方法解析
理解单目相机3D几何特性
激光雷达技术、以及立体视觉通常用于3D定位和场景理解研究中,那么单个摄像头是否也可以用于3D定位和场景理解中吗?所以我们首先必须了解相机如何将3D场景转换为2D图像的基本知识,当我们认为相机坐标系中的物体场景是相机原点位置(0,0,0)以及在相机的坐标系的X、Y、Z轴时,摄像机将3D物体场景转换成由下面的图描述的方式的2D图像。
点云PCL博主
2022/04/06
1.8K0
理解单目相机3D几何特性
自动驾驶汽车的伪激光雷达-双目立体视觉
双目立体视觉(Binocular Stereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。
点云PCL博主
2022/02/10
1.4K0
自动驾驶汽车的伪激光雷达-双目立体视觉
基于消失点的相机自标定(1)
标题:Camera calibration using two or three vanishing points
点云PCL博主
2020/12/17
4.2K0
基于消失点的相机自标定(1)
[图像]摄像机标定(2) 张正友标定推导详解
原文链接:http://blog.csdn.net/humanking7/article/details/44756235
祥知道
2020/03/10
1.7K0
模型矩阵、视图矩阵、投影矩阵
模型视图投影矩阵的作用,就是将顶点从局部坐标系转化到规范立方体(Canonical View Volnme)中。总而言之,模型视图投影矩阵=投影矩阵×视图矩阵×模型矩阵,模型矩阵将顶点从局部坐标系转化到世界坐标系中,视图矩阵将顶点从世界坐标系转化到视图坐标系下,而投影矩阵将顶点从视图坐标系转化到规范立方体中。
全栈程序员站长
2022/08/27
2.4K0
如何实现智能视觉测量系统-为什么原木智能检尺需要高精度3D相机
智能视觉测量是指用计算机视觉技术实现对物体的尺寸测量,它在工业、林业、物流等领域有重要的应用。一般做法是用相机或激光雷达对物体拍照/扫描,然后识别图像中的待测量物体,得到其边界或形状信息,最后在坐标系中计算物体的尺寸。本文将以原木智能检尺(直径测量)为例,介绍智能视觉测量系统的技术原理,以及需要解决的难点问题。
SIGAI学习与实践平台
2023/10/16
8730
如何实现智能视觉测量系统-为什么原木智能检尺需要高精度3D相机
自动驾驶视觉融合-相机校准与激光点云投影
多传感器融合一直是自动驾驶领域非常火的名词, 但是如何融合不同传感器的原始数据, 很多人对此都没有清晰的思路. 本文的目标是在KITTI数据集上实现激光雷达和相机的数据融合. 然而激光雷达得到的是3D点云, 而单目相机得到的是2D图像, 如何将3D空间中的点投影到图像平面上, 从而获得激光雷达与图像平面相交的区域, 是本文研究的重点. 其次本文会介绍相机这个大家常见的传感器, 以及讲解如何对相机进行畸变校准.
小白学视觉
2022/09/28
1.9K0
3D图形学线代基础
如标题所言都是些很基础但是异常重要的数学知识,如果不能彻底掌握它们,在 3D 的世界中你将寸步难行。
NewbieYoung
2020/10/26
2.2K0
3D图形学线代基础
WebGL简易教程(五):图形变换(模型、视图、投影变换)
通过之前的教程,对WebGL中可编程渲染管线的流程有了一定的认识。但是只有前面的知识还不足以绘制真正的三维场景,可以发现之前我们绘制的点、三角形的坐标都是[-1,1]之间,Z值的坐标都是采用的默认0值,而一般的三维场景都是很复杂的三维坐标。为了在二维视图中绘制复杂的三维场景,需要进行相应的的图形变换;这一篇教程,就是详细讲解WebGL的图形变换的过程,这个过程同样也适合OpenGL/OpenGL ES,甚至其他3D图形接口。
charlee44
2019/10/08
3K0
WebGL简易教程(五):图形变换(模型、视图、投影变换)
计算机视觉-相机标定(Camera Calibration)
在图像测量过程以及机器视觉应用中,为确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立摄像机成像的几何模型,这些几何模型参数就是摄像机参数。在大多数条件下这些参数必须通过实验与计算才能得到,这个求解参数的过程就称之为相机标定。简单来说是从世界坐标系换到图像坐标系的过程,也就是求最终的投影矩阵 P P P的过程。 无论是在图像测量或者机器视觉应用中,摄像机参数的标定都是非常关键的环节,其标定结果的精度及算法的稳定性直接影响摄像机工作产生结果的准确性。因此,做好摄像机标定是做好后续工作的前提,是提高标定精度是科研工作的重点所在。其标定的目的就是为了相机内参、外参、畸变参数。
全栈程序员站长
2022/09/02
1.3K0
计算机视觉-相机标定(Camera Calibration)
相机标定基础
从二维图像中恢复物体的三维信息,必须要知道空间坐标系中的物体点同它在图像平面上像点之间的对应关系,而这个对应关系是由摄像机的成像几何模型所决定的,这些几何模型参数就是摄像机参数。在大多数情况下这些参数必须通过实验才能得到,这个过程被称为摄像机标定。 摄像机标定就是确定摄像机内部几何和光学特性(内部参数)以及摄像机坐标系相对于世界坐标系的三维位置和方向(外部参数)的过程。
全栈程序员站长
2022/08/26
7310
相机标定基础
[图像]摄像机标定(1) 标定中的四个坐标系
原文链接:http://blog.csdn.net/humanking7/article/details/44756073
祥知道
2020/03/10
1.9K0
相机成像模型分析
相机对于机器人来说就相当于人的眼睛,景物在相机中呈现的样子就是机器看到的世界的样子。当我们理解了相机的成像原理,才能理解图像中的景物与实际世界中景物的对应关系。
小白学视觉
2019/10/24
2.3K0
相机成像模型分析
综述 | 相机标定方法
在图像测量过程以及机器视觉应用中,为确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立相机成像的几何模型,这些几何模型参数就是相机参数。在大多数条件下这些参数(内参、外参、畸变参数)必须通过实验与计算才能得到,这个求解参数的过程就称之为相机标定(或摄像机标定)。无论是在图像测量或者机器视觉应用中,相机参数的标定都是非常关键的环节,其标定结果的精度及算法的稳定性直接影响相机工作产生结果的准确性。因此,做好相机标定是做好后续工作的前提,提高标定精度是科研工作的重点所在。
AI算法与图像处理
2019/08/29
8660
综述 | 相机标定方法
[Halcon&标定] 单相机标定「建议收藏」
我们在摄像机坐标系到图像坐标系变换时谈到透视投影。摄像机拍照时通过透镜把实物投影到像平面上,但是透镜由于制造精度以及组装工艺的偏差会引入畸变,导致原始图像的失真,会对拍摄的物体的形状产生变化,影响测量。因此我们需要考虑成像畸变的问题。
全栈程序员站长
2022/09/01
2.8K0
推荐阅读
相关推荐
相机标定(Camera calibration)原理、步骤
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档