秒杀系统涉及到的知识点
秒杀简单设计方案
比如有10件商品要秒杀,可以放到缓存中,读写时不要加锁。 当并发量大的时候,可能有25个人秒杀成功,这样后面的就可以直接抛秒杀结束的静态页面。进去的25个人中有15个人是不可能获得商品的。所以可以根据进入的先后顺序只能前10个人购买成功。后面15个人就抛商品已秒杀完。
假设我们的秒杀场景
比如某商品10件物品待秒. 假设有100台web服务器(假设web服务器是Nginx + Tomcat),n台app服务器,n个数据库
第一步 如果Java层做过滤, 可以在每台web服务器的业务处理模块里做个计数器AtomicInteger(10)=待秒商品总数,decreaseAndGet()>=0的继续做后续处理, <0的直接返回秒杀结束页面,这样经过第一步的处理只剩下100台*10个=1000个请求。
第二步, memcached 里以商品id作为key的value放个10, 每个web服务器在接到每个请求的同时, 向memcached服务器发起请求, 利用memcached的decr(key,1)操作返回值>=0的继续处理, 其余的返回秒杀失败页面,这样经过第二步的处理只剩下100台中最快速到达的10个请求。
第三步, 向App服务器发起下单操作事务。
第四步, App服务器向商品所在的数据库请求减库存操作(操作数据库时可以 "update table set count=count-1 where id=商品id and count>0;" update 成功记录数为1, 再向订单数据库添加订单记录, 都成功后提交整个事务, 否则的话提示秒杀失败,用户进入支付流程。
看看淘宝的秒杀
I:关闭死锁检测,提高并发处理性能。
II:修改源代码,将排队提到进入引擎层前,降低引擎层面的并发度。
III:组提交,降低server和引擎的交互次数,降低IO消耗。
解决方案1:将存库从MySQL前移到Redis中,所有的写操作放到内存中,由于Redis中不存在锁故不会出现互相等待,并且由于Redis的写性能和读性能都远高于MySQL,这就解决了高并发下的性能问题。然后通过队列等异步手段,将变化的数据异步写入到DB中。
优点:解决性能问题
缺点:没有解决超卖问题,同时由于异步写入DB,存在某一时刻DB和Redis中数据不一致的风险。
解决方案2:引入队列,然后将所有写DB操作在单队列中排队,完全串行处理。当达到库存阀值的时候就不在消费队列,并关闭购买功能。这就解决了超卖问题。
优点:解决超卖问题,略微提升性能。
缺点:性能受限于队列处理机处理性能和DB的写入性能中最短的那个,另外多商品同时抢购的时候需要准备多条队列。
解决方案3:将写操作前移到MC中,同时利用MC的轻量级的锁机制CAS来实现减库存操作。
优点:读写在内存中,操作性能快,引入轻量级锁之后可以保证同一时刻只有一个写入成功,解决减库存问题。
缺点:没有实测,基于CAS的特性不知道高并发下是否会出现大量更新失败?不过加锁之后肯定对并发性能会有影响。
解决方案4:将提交操作变成两段式,先申请后确认。然后利用Redis的原子自增操作,同时利用Redis的事务特性来发号,保证拿到小于等于库存阀值的号的人都可以成功提交订单。然后数据异步更新到DB中。
优点:解决超卖问题,库存读写都在内存中,故同时解决性能问题。
缺点:由于异步写入DB,可能存在数据不一致。另可能存在少买,也就是如果拿到号的人不真正下订单,可能库存减为0,但是订单数并没有达到库存阀值。
1、前端三板斧【扩容】【限流】【静态化】
2、后端两条路【内存】+【排队】
-END-