/*
* linux/fs/minix/bitmap.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/* bitmap.c contains the code that handles the inode and block bitmaps */
#ifdef MODULE
#include <linux/module.h>
#endif
#include <linux/sched.h>
#include <linux/minix_fs.h>
#include <linux/stat.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <asm/bitops.h>
static int nibblemap[] = { 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4 };
static unsigned long count_used(struct buffer_head *map[], unsigned numblocks,
unsigned numbits)
{
unsigned i, j, end, sum = 0;
struct buffer_head *bh;
for (i=0; (i<numblocks) && numbits; i++) {
if (!(bh=map[i]))
return(0);
if (numbits >= (8*BLOCK_SIZE)) {
end = BLOCK_SIZE;
numbits -= 8*BLOCK_SIZE;
} else {
int tmp;
end = numbits >> 3;
numbits &= 0x7;
tmp = bh->b_data[end] & ((1<<numbits)-1);
sum += nibblemap[tmp&0xf] + nibblemap[(tmp>>4)&0xf];
numbits = 0;
}
for (j=0; j<end; j++)
sum += nibblemap[bh->b_data[j] & 0xf]
+ nibblemap[(bh->b_data[j]>>4)&0xf];
}
return(sum);
}
void minix_free_block(struct super_block * sb, int block)
{
struct buffer_head * bh;
unsigned int bit,zone;
if (!sb) {
printk("trying to free block on nonexistent device\n");
return;
}
if (block < sb->u.minix_sb.s_firstdatazone ||
block >= sb->u.minix_sb.s_nzones) {
printk("trying to free block not in datazone\n");
return;
}
bh = get_hash_table(sb->s_dev,block,BLOCK_SIZE);
if (bh)
bh->b_dirt=0;
brelse(bh);
// 算出在文件系统内块数
zone = block - sb->u.minix_sb.s_firstdatazone + 1;
// 每个块位图有1024字节,每个字节8个比特,可以管理8192个块
bit = zone & 8191;
// 算出块落在哪个块的位图
zone >>= 13;
// 取出保存了位图的数据块
bh = sb->u.minix_sb.s_zmap[zone];
if (!bh) {
printk("minix_free_block: nonexistent bitmap buffer\n");
return;
}
// 设置该块为空闲
if (!clear_bit(bit,bh->b_data))
printk("free_block (%04x:%d): bit already cleared\n",sb->s_dev,block);
// 回写
mark_buffer_dirty(bh, 1);
return;
}
// 在硬盘中新建一个数据块
int minix_new_block(struct super_block * sb)
{
struct buffer_head * bh;
int i,j;
if (!sb) {
printk("trying to get new block from nonexistent device\n");
return 0;
}
repeat:
j = 8192;
// 从数据块位图中找到一个可用的块号
for (i=0 ; i<8 ; i++)
if ((bh=sb->u.minix_sb.s_zmap[i]) != NULL)
if ((j=find_first_zero_bit(bh->b_data, 8192)) < 8192)
break;
if (i>=8 || !bh || j>=8192)
return 0;
// 设置该块为已使用
if (set_bit(j,bh->b_data)) {
printk("new_block: bit already set");
goto repeat;
}
// 该buffer需要回写
mark_buffer_dirty(bh, 1);
// 算出该数据块在硬盘的绝对块号
j += i*8192 + sb->u.minix_sb.s_firstdatazone-1;
if (j < sb->u.minix_sb.s_firstdatazone ||
j >= sb->u.minix_sb.s_nzones)
return 0;
// 获取一个可用的buffer
if (!(bh = getblk(sb->s_dev,j,BLOCK_SIZE))) {
printk("new_block: cannot get block");
return 0;
}
// 置0
memset(bh->b_data, 0, BLOCK_SIZE);
// 数据是有效的,即最新的
bh->b_uptodate = 1;
// 因为置0了,需要回写到硬盘
mark_buffer_dirty(bh, 1);
brelse(bh);
return j;
}
unsigned long minix_count_free_blocks(struct super_block *sb)
{
return (sb->u.minix_sb.s_nzones - count_used(sb->u.minix_sb.s_zmap,sb->u.minix_sb.s_zmap_blocks,sb->u.minix_sb.s_nzones))
<< sb->u.minix_sb.s_log_zone_size;
}
// 释放inode节点,并删除硬盘的inode节点
void minix_free_inode(struct inode * inode)
{
struct buffer_head * bh;
unsigned long ino;
if (!inode)
return;
if (!inode->i_dev) {
printk("free_inode: inode has no device\n");
return;
}
if (inode->i_count != 1) {
printk("free_inode: inode has count=%d\n",inode->i_count);
return;
}
if (inode->i_nlink) {
printk("free_inode: inode has nlink=%d\n",inode->i_nlink);
return;
}
if (!inode->i_sb) {
printk("free_inode: inode on nonexistent device\n");
return;
}
if (inode->i_ino < 1 || inode->i_ino >= inode->i_sb->u.minix_sb.s_ninodes) {
printk("free_inode: inode 0 or nonexistent inode\n");
return;
}
ino = inode->i_ino;
if (!(bh=inode->i_sb->u.minix_sb.s_imap[ino >> 13])) {
printk("free_inode: nonexistent imap in superblock\n");
return;
}
// 回收inode节点
clear_inode(inode);
// 清除位图的已使用标记
if (!clear_bit(ino & 8191, bh->b_data))
printk("free_inode: bit %lu already cleared.\n",ino);
mark_buffer_dirty(bh, 1);
}
// 在inode对应的文件系统对应的硬盘中新增一个inode节点,并在内存申请一个对应的inode结构
struct inode * minix_new_inode(const struct inode * dir)
{
struct super_block * sb;
struct inode * inode;
struct buffer_head * bh;
int i,j;
if (!dir || !(inode = get_empty_inode()))
return NULL;
// 超级块
sb = dir->i_sb;
// 指向所属超级块
inode->i_sb = sb;
inode->i_flags = inode->i_sb->s_flags;
j = 8192;
// 从inode位图找到空闲项
for (i=0 ; i<8 ; i++)
if ((bh = inode->i_sb->u.minix_sb.s_imap[i]) != NULL)
if ((j=find_first_zero_bit(bh->b_data, 8192)) < 8192)
break;
if (!bh || j >= 8192) {
iput(inode);
return NULL;
}
// 设置为已使用状态
if (set_bit(j,bh->b_data)) { /* shouldn't happen */
printk("new_inode: bit already set");
iput(inode);
return NULL;
}
// 更新了位图,需要回写
mark_buffer_dirty(bh, 1);
j += i*8192;
if (!j || j >= inode->i_sb->u.minix_sb.s_ninodes) {
iput(inode);
return NULL;
}
inode->i_count = 1;
inode->i_nlink = 1;
inode->i_dev = sb->s_dev;
inode->i_uid = current->fsuid;
inode->i_gid = (dir->i_mode & S_ISGID) ? dir->i_gid : current->fsgid;
inode->i_dirt = 1;
inode->i_ino = j;
inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
inode->i_op = NULL;
inode->i_blocks = inode->i_blksize = 0;
// 插入inode列表末尾,表示inode节点已使用
insert_inode_hash(inode);
return inode;
}
unsigned long minix_count_free_inodes(struct super_block *sb)
{
return sb->u.minix_sb.s_ninodes - count_used(sb->u.minix_sb.s_imap,sb->u.minix_sb.s_imap_blocks,sb->u.minix_sb.s_ninodes);
}