首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >如何使用Python处理HDF格式数据

如何使用Python处理HDF格式数据

作者头像
MeteoAI
发布2019-07-24 16:01:51
发布2019-07-24 16:01:51
9.9K40
举报
文章被收录于专栏:MeteoAIMeteoAI
运行总次数:0

HDF也是一种自描述格式文件,主要用于存储和分发科学数据。气象领域中卫星数据经常使用此格式,比如MODIS,OMI,LIS/OTD等卫星产品。对HDF格式细节感兴趣的可以Google了解一下。

这一次呢还是以Python为主,来介绍如何处理HDF格式数据。Python中有不少库都可以用来处理HDF格式数据,比如h5py可以处理HDF5格式(pandas中 read_hdf 函数),pyhdf可以用来处理HDF4格式。此外,gdal也可以处理HDF(NetCDF,GRIB等)格式数据。

安装

首先安装相关库

代码语言:javascript
代码运行次数:0
运行
复制
conda install pyhdf
conda install h5py

上述库均可以通过conda包管理器进行安装,如果conda包管理器无法安装,对于windows系统,可以查找是否存在已打包的安装包,而unix系统可以通过源码编译安装。

数据处理和可视化

以LIS/OTD卫星闪电成像数据为例,处理HDF4格式数据并进行绘图:

代码语言:javascript
代码运行次数:0
运行
复制
import numpy as np

import matplotlib.pyplot as plt
from matplotlib import cm, colors

import seaborn as sns
import cartopy.crs as ccrs
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter

from pyhdf.SD import SD, SDC

sns.set_context('talk', font_scale=1.3)

data = SD('LISOTD_LRMTS_V2.3.2014.hdf', SDC.READ)
lon = data.select('Longitude')
lat = data.select('Latitude')
flash = data.select('LRMTS_COM_FR')

# 设置colormap
collev= ['#ffffff', '#ab18b0', '#07048f', '#1ba01f', '#dfdf18', '#e88f14', '#c87d23', '#d30001', '#383838']
levels = [0, 0.01, 0.02, 0.04, 0.06, 0.1, 0.12, 0.15, 0.18, 0.2]
cmaps = colors.ListedColormap(collev, 'indexed')
norm = colors.BoundaryNorm(levels, cmaps.N)

proj = ccrs.PlateCarree()

fig, ax = plt.subplots(figsize=(16, 9), subplot_kw=dict(projection=proj))

LON, LAT= np.meshgrid(lon[:], lat[:])

con = ax.contourf(LON, LAT, flash[:, :, 150], cmap=cmaps, norm=norm, levels=levels, extend='max')

cb = fig.colorbar(con, shrink=0.75, pad=0.02)
cb.cmap.set_over('#000000')
cb.ax.tick_params(direction='in', length=5)

ax.coastlines()

ax.set_xticks(np.linspace(-180, 180, 5), crs=proj)
ax.set_yticks(np.linspace(-90, 90, 5), crs=proj)

lon_formatter= LongitudeFormatter(zero_direction_label=True)
lat_formatter= LatitudeFormatter()

ax.xaxis.set_major_formatter(lon_formatter)
ax.yaxis.set_major_formatter(lat_formatter)

某月全球闪电密度分布

上述示例基于pyhdf进行HDF4格式数据处理和可视化,HDF4文件中包含的变量和属性获取方式见文末的Notebook,其中给出了更详细的示例。

以下基于h5py读取HDF5格式数据,以OMI卫星O3数据为例:

代码语言:javascript
代码运行次数:0
运行
复制
import h5py

data = h5py.File('TES-Aura_L3-O3-M2005m07_F01_10.he5')
lon = data.get('/HDFEOS/GRIDS/NadirGrid/Data Fields/Longitude').value
lat = data.get('/HDFEOS/GRIDS/NadirGrid/Data Fields/Latitude').value
o3 = data.get('/HDFEOS/GRIDS/NadirGrid/Data Fields/O3').value

proj = ccrs.PlateCarree()

fig, ax = plt.subplots(figsize=(16, 9), subplot_kw=dict(projection=proj))
LON, LAT = np.meshgrid(lon[:], lat[:])
con = ax.contourf(LON, LAT, o3[10, :, :]*1e6, np.arange(0, 8.01, 0.1), vmin=0, vmax=8, cmap=cm.RdGy_r)

ax.coastlines()
ax.set_xticks(np.linspace(-180, 180, 5), crs=proj)
ax.set_yticks(np.linspace(-90, 90, 5), crs=proj)

lon_formatter = LongitudeFormatter(zero_direction_label=True)
lat_formatter = LatitudeFormatter()
ax.xaxis.set_major_formatter(lon_formatter)
ax.yaxis.set_major_formatter(lat_formatter)

cb = fig.colorbar(con, shrink=0.75, pad=0.02)
cb.set_ticks(np.arange(0, 8.01, 1))
cb.ax.tick_params(direction='in', length=5)

上述示例中使用类似unix中路径的方式获取相关变量,这在HDF格式数据中称为Groups。不同的组可以包含子组,从而形成类似嵌套的形式。详细的介绍可Google了解。

某时刻某高度层全球O3浓度分布

数据和代码见文末Notebook链接,文末Notebook中除了上述基于pyhdf和h5py的示例外,还给出了基于gdal处理HDF4和HDF5格式数据的示例。

Notebook链接:https://pan.baidu.com/s/1WD8OD3vUuISIB5Os_T8-vw

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-02-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 MeteoAI 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档