CopyOnWriteArrayList是ArrayList的线程安全版本,内部也是通过数组实现,每次对数组的修改都完全拷贝一份新的数组来修改,修改完了再替换掉老数组,这样保证了只阻塞写操作,不阻塞读操作,实现读写分离。
CopyOnWriteArrayList实现了List, RandomAccess, Cloneable, java.io.Serializable等接口。
CopyOnWriteArrayList实现了List,提供了基础的添加、删除、遍历等操作。
CopyOnWriteArrayList实现了RandomAccess,提供了随机访问的能力。
CopyOnWriteArrayList实现了Cloneable,可以被克隆。
CopyOnWriteArrayList实现了Serializable,可以被序列化。
/** 用于修改时加锁 */final transient ReentrantLock lock = new ReentrantLock();
/** 真正存储元素的地方,只能通过getArray()/setArray()访问 */private transient volatile Object[] array;
(1)lock
用于修改时加锁,使用transient修饰表示不自动序列化。
(2)array
真正存储元素的地方,使用transient修饰表示不自动序列化,使用volatile修饰表示一个线程对这个字段的修改另外一个线程立即可见。
问题:为啥没有size字段?且听后续分解。
创建空数组。
public CopyOnWriteArrayList() { // 所有对array的操作都是通过setArray()和getArray()进行 setArray(new Object[0]);}
final void setArray(Object[] a) { array = a;}
如果c是CopyOnWriteArrayList类型,直接把它的数组赋值给当前list的数组,注意这里是浅拷贝,两个集合共用同一个数组。
如果c不是CopyOnWriteArrayList类型,则进行拷贝把c的元素全部拷贝到当前list的数组中。
public CopyOnWriteArrayList(Collection<? extends E> c) { Object[] elements; if (c.getClass() == CopyOnWriteArrayList.class) // 如果c也是CopyOnWriteArrayList类型 // 那么直接把它的数组拿过来使用 elements = ((CopyOnWriteArrayList<?>)c).getArray(); else { // 否则调用其toArray()方法将集合元素转化为数组 elements = c.toArray(); // 这里c.toArray()返回的不一定是Object[]类型 // 详细原因见ArrayList里面的分析 if (elements.getClass() != Object[].class) elements = Arrays.copyOf(elements, elements.length, Object[].class); } setArray(elements);}
把toCopyIn的元素拷贝给当前list的数组。
public CopyOnWriteArrayList(E[] toCopyIn) { setArray(Arrays.copyOf(toCopyIn, toCopyIn.length, Object[].class));}
添加一个元素到末尾。
public boolean add(E e) { final ReentrantLock lock = this.lock; // 加锁 lock.lock(); try { // 获取旧数组 Object[] elements = getArray(); int len = elements.length; // 将旧数组元素拷贝到新数组中 // 新数组大小是旧数组大小加1 Object[] newElements = Arrays.copyOf(elements, len + 1); // 将元素放在最后一位 newElements[len] = e; setArray(newElements); return true; } finally { // 释放锁 lock.unlock(); }}
(1)加锁;
(2)获取元素数组;
(3)新建一个数组,大小为原数组长度加1,并把原数组元素拷贝到新数组;
(4)把新添加的元素放到新数组的末尾;
(5)把新数组赋值给当前对象的array属性,覆盖原数组;
(6)解锁;
添加一个元素在指定索引处。
public void add(int index, E element) { final ReentrantLock lock = this.lock; // 加锁 lock.lock(); try { // 获取旧数组 Object[] elements = getArray(); int len = elements.length; // 检查是否越界, 可以等于len if (index > len || index < 0) throw new IndexOutOfBoundsException("Index: "+index+ ", Size: "+len); Object[] newElements; int numMoved = len - index; if (numMoved == 0) // 如果插入的位置是最后一位 // 那么拷贝一个n+1的数组, 其前n个元素与旧数组一致 newElements = Arrays.copyOf(elements, len + 1); else { // 如果插入的位置不是最后一位 // 那么新建一个n+1的数组 newElements = new Object[len + 1]; // 拷贝旧数组前index的元素到新数组中 System.arraycopy(elements, 0, newElements, 0, index); // 将index及其之后的元素往后挪一位拷贝到新数组中 // 这样正好index位置是空出来的 System.arraycopy(elements, index, newElements, index + 1, numMoved); } // 将元素放置在index处 newElements[index] = element; setArray(newElements); } finally { // 释放锁 lock.unlock(); }}
(1)加锁;
(2)检查索引是否合法,如果不合法抛出IndexOutOfBoundsException异常,注意这里index等于len也是合法的;
(3)如果索引等于数组长度(也就是数组最后一位再加1),那就拷贝一个len+1的数组;
(4)如果索引不等于数组长度,那就新建一个len+1的数组,并按索引位置分成两部分,索引之前(不包含)的部分拷贝到新数组索引之前(不包含)的部分,索引之后(包含)的位置拷贝到新数组索引之后(不包含)的位置,索引所在位置留空;
(5)把索引位置赋值为待添加的元素;
(6)把新数组赋值给当前对象的array属性,覆盖原数组;
(7)解锁;
添加一个元素如果这个元素不存在于集合中。
public boolean addIfAbsent(E e) { // 获取元素数组, 取名为快照 Object[] snapshot = getArray(); // 检查如果元素不存在,直接返回false // 如果存在再调用addIfAbsent()方法添加元素 return indexOf(e, snapshot, 0, snapshot.length) >= 0 ? false : addIfAbsent(e, snapshot);}
private boolean addIfAbsent(E e, Object[] snapshot) { final ReentrantLock lock = this.lock; // 加锁 lock.lock(); try { // 重新获取旧数组 Object[] current = getArray(); int len = current.length; // 如果快照与刚获取的数组不一致 // 说明有修改 if (snapshot != current) { // 重新检查元素是否在刚获取的数组里 int common = Math.min(snapshot.length, len); for (int i = 0; i < common; i++) // 到这个方法里面了, 说明元素不在快照里面 if (current[i] != snapshot[i] && eq(e, current[i])) return false; if (indexOf(e, current, common, len) >= 0) return false; } // 拷贝一份n+1的数组 Object[] newElements = Arrays.copyOf(current, len + 1); // 将元素放在最后一位 newElements[len] = e; setArray(newElements); return true; } finally { // 释放锁 lock.unlock(); }}
(1)检查这个元素是否存在于数组快照中;
(2)如果存在直接返回false,如果不存在调用addIfAbsent(E e, Object[] snapshot)处理;
(3)加锁;
(4)如果当前数组不等于传入的快照,说明有修改,检查待添加的元素是否存在于当前数组中,如果存在直接返回false;
(5)拷贝一个新数组,长度等于原数组长度加1,并把原数组元素拷贝到新数组中;
(6)把新元素添加到数组最后一位;
(7)把新数组赋值给当前对象的array属性,覆盖原数组;
(8)解锁;
获取指定索引的元素,支持随机访问,时间复杂度为O(1)。
public E get(int index) { // 获取元素不需要加锁 // 直接返回index位置的元素 // 这里是没有做越界检查的, 因为数组本身会做越界检查 return get(getArray(), index);}
final Object[] getArray() { return array;}
private E get(Object[] a, int index) { return (E) a[index];}
(1)获取元素数组;
(2)返回数组指定索引位置的元素;
删除指定索引位置的元素。
public E remove(int index) { final ReentrantLock lock = this.lock; // 加锁 lock.lock(); try { // 获取旧数组 Object[] elements = getArray(); int len = elements.length; E oldValue = get(elements, index); int numMoved = len - index - 1; if (numMoved == 0) // 如果移除的是最后一位 // 那么直接拷贝一份n-1的新数组, 最后一位就自动删除了 setArray(Arrays.copyOf(elements, len - 1)); else { // 如果移除的不是最后一位 // 那么新建一个n-1的新数组 Object[] newElements = new Object[len - 1]; // 将前index的元素拷贝到新数组中 System.arraycopy(elements, 0, newElements, 0, index); // 将index后面(不包含)的元素往前挪一位 // 这样正好把index位置覆盖掉了, 相当于删除了 System.arraycopy(elements, index + 1, newElements, index, numMoved); setArray(newElements); } return oldValue; } finally { // 释放锁 lock.unlock(); }}
(1)加锁;
(2)获取指定索引位置元素的旧值;
(3)如果移除的是最后一位元素,则把原数组的前len-1个元素拷贝到新数组中,并把新数组赋值给当前对象的数组属性;
(4)如果移除的不是最后一位元素,则新建一个len-1长度的数组,并把原数组除了指定索引位置的元素全部拷贝到新数组中,并把新数组赋值给当前对象的数组属性;
(5)解锁并返回旧值;
返回数组的长度。
public int size() { // 获取元素个数不需要加锁 // 直接返回数组的长度 return getArray().length;}
(1)CopyOnWriteArrayList使用ReentrantLock重入锁加锁,保证线程安全;
(2)CopyOnWriteArrayList的写操作都要先拷贝一份新数组,在新数组中做修改,修改完了再用新数组替换老数组,所以空间复杂度是O(n),性能比较低下;
(3)CopyOnWriteArrayList的读操作支持随机访问,时间复杂度为O(1);
(4)CopyOnWriteArrayList采用读写分离的思想,读操作不加锁,写操作加锁,且写操作占用较大内存空间,所以适用于读多写少的场合;
(5)CopyOnWriteArrayList只保证最终一致性,不保证实时一致性;
为什么CopyOnWriteArrayList没有size属性?
因为每次修改都是拷贝一份正好可以存储目标个数元素的数组,所以不需要size属性了,数组的长度就是集合的大小,而不像ArrayList数组的长度实际是要大于集合的大小的。
比如,add(E e)操作,先拷贝一份n+1个元素的数组,再把新元素放到新数组的最后一位,这时新数组的长度为len+1了,也就是集合的size了。