来自 ImportNew,作者:唐尤华 https://dzone.com/articles/a-birds-eye-view-on-java-concurrency-frameworks-1
几年前 NoSQL 开始流行的时候,像其他团队一样,我们的团队也热衷于令人兴奋的新东西,并且计划替换一个应用程序的数据库。 但是,当深入实现细节时,我们想起了一位智者曾经说过的话:“细节决定成败”。最终我们意识到 NoSQL 不是解决所有问题的银弹,而 NoSQL vs RDMS 的答案是:“视情况而定”。
类似地,去年RxJava 和 Spring Reactor 这样的并发库加入了让人充满激情的语句,如异步非阻塞方法等。为了避免再犯同样的错误,我们尝试评估诸如 ExecutorService、 RxJava、Disruptor 和 Akka 这些并发框架彼此之间的差异,以及如何确定各自框架的正确用法。
本文中用到的术语在这里有更详细的描述。
在开始比较并发框架的之前,让我们快速复习一下如何配置最佳线程数以提高并行任务的性能。 这个理论适用于所有框架,并且在所有框架中使用相同的线程配置来度量性能。
参考: http://baddotrobot.com/blog/2013/06/01/optimum-number-of-threads/
性能测试配置 GCP -> 处理器:Intel(R) Xeon(R) CPU @ 2.30GHz;架构:x86_64;CPU 内核:8个(注意: 这些结果仅对该配置有意义,并不表示一个框架比另一个框架更好)。
如果一个应用程序部署在多个节点上,并且每个节点的 req/sec 小于可用的核心数量,那么 ExecutorService 可用于并行化任务,更快地执行代码。
如果一个应用程序部署在多个节点上,并且每个节点的 req/sec 远远高于可用的核心数量,那么使用 ExecutorService 进一步并行化只会使情况变得更糟。
当外部服务延迟增加到 400ms 时,性能测试结果如下(请求速率 @50 req/sec,8核)。
5.3 所有任务按顺序执行示例
// I/O 任务:调用外部服务
String posts = JsonService.getPosts();
String comments = JsonService.getComments();
String albums = JsonService.getAlbums();
String photos = JsonService.getPhotos();
// 合并来自外部服务的响应
// (内存中的任务将作为此操作的一部分执行)
int userId = new Random().nextInt(10) + 1;
String postsAndCommentsOfRandomUser = ResponseUtil.getPostsAndCommentsOfRandomUser(userId, posts, comments);
String albumsAndPhotosOfRandomUser = ResponseUtil.getAlbumsAndPhotosOfRandomUser(userId, albums, photos);
// 构建最终响应并将其发送回客户端
String response = postsAndCommentsOfRandomUser + albumsAndPhotosOfRandomUser;
return response;
// 添加 I/O 任务
List<Callable<String>> ioCallableTasks = new ArrayList<>();
ioCallableTasks.add(JsonService::getPosts);
ioCallableTasks.add(JsonService::getComments);
ioCallableTasks.add(JsonService::getAlbums);
ioCallableTasks.add(JsonService::getPhotos);
// 调用所有并行任务
ExecutorService ioExecutorService = CustomThreads.getExecutorService(ioPoolSize);
List<Future<String>> futuresOfIOTasks = ioExecutorService.invokeAll(ioCallableTasks);
// 获取 I/O 操作(阻塞调用)结果
String posts = futuresOfIOTasks.get(0).get();
String comments = futuresOfIOTasks.get(1).get();
String albums = futuresOfIOTasks.get(2).get();
String photos = futuresOfIOTasks.get(3).get();
// 合并响应(内存中的任务是此操作的一部分)
String postsAndCommentsOfRandomUser = ResponseUtil.getPostsAndCommentsOfRandomUser(userId, posts, comments);
String albumsAndPhotosOfRandomUser = ResponseUtil.getAlbumsAndPhotosOfRandomUser(userId, albums, photos);
// 构建最终响应并将其发送回客户端
return postsAndCommentsOfRandomUser + albumsAndPhotosOfRandomUser;
与上述情况类似:处理传入请求的 HTTP 线程被阻塞,而 CompletableFuture 用于处理并行任务
如果没有 AsyncResponse,性能与 ExecutorService 相同。 如果多个 API 调用必须异步并且链接起来,那么这种方法更好(类似 Node 中的 Promises)。
ExecutorService ioExecutorService = CustomThreads.getExecutorService(ioPoolSize);
// I/O 任务
CompletableFuture<String> postsFuture = CompletableFuture.supplyAsync(JsonService::getPosts, ioExecutorService);
CompletableFuture<String> commentsFuture = CompletableFuture.supplyAsync(JsonService::getComments,
ioExecutorService);
CompletableFuture<String> albumsFuture = CompletableFuture.supplyAsync(JsonService::getAlbums,
ioExecutorService);
CompletableFuture<String> photosFuture = CompletableFuture.supplyAsync(JsonService::getPhotos,
ioExecutorService);
CompletableFuture.allOf(postsFuture, commentsFuture, albumsFuture, photosFuture).get();
// 从 I/O 任务(阻塞调用)获得响应
String posts = postsFuture.get();
String comments = commentsFuture.get();
String albums = albumsFuture.get();
String photos = photosFuture.get();
// 合并响应(内存中的任务将是此操作的一部分)
String postsAndCommentsOfRandomUser = ResponseUtil.getPostsAndCommentsOfRandomUser(userId, posts, comments);
String albumsAndPhotosOfRandomUser = ResponseUtil.getAlbumsAndPhotosOfRandomUser(userId, albums, photos);
// 构建最终响应并将其发送回客户端
return postsAndCommentsOfRandomUser + albumsAndPhotosOfRandomUser;
使用 ExecutorService 并行处理所有任务,并使用 @suspended AsyncResponse response 以非阻塞方式发送响应。
图片来自 http://tutorials.jenkov.com/java-nio/nio-vs-io.html
如果用例类似于服务器端聊天应用程序,在客户端响应之前,线程不需要保持连接,那么异步、非阻塞方法比同步通信更受欢迎。在这些用例中,系统资源可以通过异步、非阻塞方法得到更好的利用,而不仅仅是等待。
// 为异步执行提交并行任务
ExecutorService ioExecutorService = CustomThreads.getExecutorService(ioPoolSize);
CompletableFuture<String> postsFuture = CompletableFuture.supplyAsync(JsonService::getPosts, ioExecutorService);
CompletableFuture<String> commentsFuture = CompletableFuture.supplyAsync(JsonService::getComments,
ioExecutorService);
CompletableFuture<String> albumsFuture = CompletableFuture.supplyAsync(JsonService::getAlbums,
ioExecutorService);
CompletableFuture<String> photosFuture = CompletableFuture.supplyAsync(JsonService::getPhotos,
ioExecutorService);
// 当 /posts API 返回响应时,它将与来自 /comments API 的响应结合在一起
// 作为这个操作的一部分,将执行内存中的一些任务
CompletableFuture<String> postsAndCommentsFuture = postsFuture.thenCombineAsync(commentsFuture,
(posts, comments) -> ResponseUtil.getPostsAndCommentsOfRandomUser(userId, posts, comments),
ioExecutorService);
// 当 /albums API 返回响应时,它将与来自 /photos API 的响应结合在一起
// 作为这个操作的一部分,将执行内存中的一些任务
CompletableFuture<String> albumsAndPhotosFuture = albumsFuture.thenCombineAsync(photosFuture,
(albums, photos) -> ResponseUtil.getAlbumsAndPhotosOfRandomUser(userId, albums, photos),
ioExecutorService);
// 构建最终响应并恢复 http 连接,把响应发送回客户端
postsAndCommentsFuture.thenAcceptBothAsync(albumsAndPhotosFuture, (s1, s2) -> {
LOG.info("Building Async Response in Thread " + Thread.currentThread().getName());
String response = s1 + s2;
asyncHttpResponse.resume(response);
}, ioExecutorService);
如果编码的场景适合异步非阻塞方式,那么可以首选 RxJava 或任何响应式开发库。 还具有诸如 back-pressure 之类的附加功能,可以在生产者和消费者之间平衡负载。
int userId = new Random().nextInt(10) + 1;
ExecutorService executor = CustomThreads.getExecutorService(8);
// I/O 任务
Observable<String> postsObservable = Observable.just(userId).map(o -> JsonService.getPosts())
.subscribeOn(Schedulers.from(executor));
Observable<String> commentsObservable = Observable.just(userId).map(o -> JsonService.getComments())
.subscribeOn(Schedulers.from(executor));
Observable<String> albumsObservable = Observable.just(userId).map(o -> JsonService.getAlbums())
.subscribeOn(Schedulers.from(executor));
Observable<String> photosObservable = Observable.just(userId).map(o -> JsonService.getPhotos())
.subscribeOn(Schedulers.from(executor));
// 合并来自 /posts 和 /comments API 的响应
// 作为这个操作的一部分,将执行内存中的一些任务
Observable<String> postsAndCommentsObservable = Observable
.zip(postsObservable, commentsObservable,
(posts, comments) -> ResponseUtil.getPostsAndCommentsOfRandomUser(userId, posts, comments))
.subscribeOn(Schedulers.from(executor));
// 合并来自 /albums 和 /photos API 的响应
// 作为这个操作的一部分,将执行内存中的一些任务
Observable<String> albumsAndPhotosObservable = Observable
.zip(albumsObservable, photosObservable,
(albums, photos) -> ResponseUtil.getAlbumsAndPhotosOfRandomUser(userId, albums, photos))
.subscribeOn(Schedulers.from(executor));
// 构建最终响应
Observable.zip(postsAndCommentsObservable, albumsAndPhotosObservable, (r1, r2) -> r1 + r2)
.subscribeOn(Schedulers.from(executor))
.subscribe((response) -> asyncResponse.resume(response), e -> asyncResponse.resume("error"));
[Queue vs RingBuffer]
图片1: http://tutorials.jenkov.com/java-concurrency/blocking-queues.html
图片2: https://www.baeldung.com/lmax-disruptor-concurrency
Disruptor 框架在下列场合性能更好:与事件驱动的体系结构一起使用,或主要关注内存任务的单个生产者和多个消费者。
static {
int userId = new Random().nextInt(10) + 1;
// 示例 Event-Handler; count down latch 用于使线程与 http 线程同步
EventHandler<Event> postsApiHandler = (event, sequence, endOfBatch) -> {
event.posts = JsonService.getPosts();
event.countDownLatch.countDown();
};
// 配置 Disputor 用于处理事件
DISRUPTOR.handleEventsWith(postsApiHandler, commentsApiHandler, albumsApiHandler)
.handleEventsWithWorkerPool(photosApiHandler1, photosApiHandler2)
.thenHandleEventsWithWorkerPool(postsAndCommentsResponseHandler1, postsAndCommentsResponseHandler2)
.handleEventsWithWorkerPool(albumsAndPhotosResponseHandler1, albumsAndPhotosResponseHandler2);
DISRUPTOR.start();
}
// 对于每个请求,在 RingBuffer 中发布一个事件:
Event event = null;
RingBuffer<Event> ringBuffer = DISRUPTOR.getRingBuffer();
long sequence = ringBuffer.next();
CountDownLatch countDownLatch = new CountDownLatch(6);
try {
event = ringBuffer.get(sequence);
event.countDownLatch = countDownLatch;
event.startTime = System.currentTimeMillis();
} finally {
ringBuffer.publish(sequence);
}
try {
event.countDownLatch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
图片来自: https://blog.codecentric.de/en/2015/08/introduction-to-akka-actors/
// 来自 controller :
Actors.masterActor.tell(new Master.Request("Get Response", event, Actors.workerActor), ActorRef.noSender());
// handler :
public Receive createReceive() {
return receiveBuilder().match(Request.class, request -> {
Event event = request.event; // Ideally, immutable data structures should be used here.
request.worker.tell(new JsonServiceWorker.Request("posts", event), getSelf());
request.worker.tell(new JsonServiceWorker.Request("comments", event), getSelf());
request.worker.tell(new JsonServiceWorker.Request("albums", event), getSelf());
request.worker.tell(new JsonServiceWorker.Request("photos", event), getSelf());
}).match(Event.class, e -> {
if (e.posts != null && e.comments != null & e.albums != null & e.photos != null) {
int userId = new Random().nextInt(10) + 1;
String postsAndCommentsOfRandomUser = ResponseUtil.getPostsAndCommentsOfRandomUser(userId, e.posts,
e.comments);
String albumsAndPhotosOfRandomUser = ResponseUtil.getAlbumsAndPhotosOfRandomUser(userId, e.albums,
e.photos);
String response = postsAndCommentsOfRandomUser + albumsAndPhotosOfRandomUser;
e.response = response;
e.countDownLatch.countDown();
}
}).build();
}