前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >RocketMQ又双叒叕system busy了,怎么破?

RocketMQ又双叒叕system busy了,怎么破?

作者头像
Bug开发工程师
发布2019-06-26 23:23:49
5.2K1
发布2019-06-26 23:23:49
举报
文章被收录于专栏:码农沉思录

现象

最近收到很多RocketMQ使用者反馈在消息发送过程中偶尔会出现如下4个错误信息之一:

  • [REJECTREQUEST]system busy, start flow control for a while
  • too many requests and system thread pool busy, RejectedExecutionException
  • [PC_SYNCHRONIZED]broker busy, start flow control for a while
  • [PCBUSY_CLEAN_QUEUE]broker busy, start flow control for a while, period in queue: %sms, size of queue: %d

原理解读

在进行消息中间件的选型时,如果待选中间件在功能上、性能上都能满足业务的情况下,建议把中间件的实现语言这个因素也考虑进去,毕竟选择一门用自己擅长的语言实现的中间件会更具掌控性。在出现异常的情况下,我们可以根据自己的经验提取错误信息关键字system busy,在RocketMQ源码中直接搜索,得到抛出上述错误信息的代码如下:

其代码入口为:org.apache.rocketmq.remoting.netty.NettyRemotingAbstract#processRequestCommand。从图中可以看出,抛出上述错误的关键原因是:pair.getObject1().rejectRequest()和抛出RejectedExecutionException异常。

备注:本文偏实战,源码只是作为分析的重点证据,故本文只会点出关键源码,并不会详细跟踪其整个实现流程,如果想详细了解其实现,可以查阅笔者编著的《RocketMQ技术内幕》。

2.1 RocketMQ 网络处理机制概述

RocketMQ的网络设计非常值得我们学习与借鉴,首先在客户端端将不同的请求定义不同的请求命令CODE,服务端会将客户端请求进行分类,每个命令或每类请求命令定义一个处理器(NettyRequestProcessor),然后每一个NettyRequestProcessor绑定到一个单独的线程池,进行命令处理,不同类型的请求将使用不同的线程池进行处理,实现线程隔离。

为了方便下文的描述,我们先简单的认识一下NettyRequestProcessor、Pair、RequestCode。其核心关键点如下:

  1. NettyRequestProcessor RocketMQ 服务端请求处理器,例如SendMessageProcessor是消息发送处理器、PullMessageProcessor是消息拉取命令处理器。
  2. RequestCode 请求CODE,用来区分请求的类型,例如SEND_MESSAGE:表示该请求为消息发送,PULL_MESSAGE:消息拉取请求。
  3. Pair 用来封装NettyRequestProcessor与ExecuteService的绑定关系。在RocketMQ的网络处理模型中,会为每一个NettyRequestProcessor与特定的线程池绑定,所有该NettyRequestProcessor的处理逻辑都在该线程池中运行。
2.2 pair.getObject1().rejectRequest()

由于读者朋友提出的问题,都是发生在消息发送过程中,故本文重点关注SendMessageProcessor#rejectRequest方法。

SendMessageProcessor#rejectRequest

代码语言:javascript
复制
1public boolean rejectRequest() {
2    return this.brokerController.getMessageStore().isOSPageCacheBusy() ||               // @1
3        this.brokerController.getMessageStore().isTransientStorePoolDeficient();        // @2
4}

拒绝请求的条件有两个,只要其中任意一个满足,则返回true。

代码@1:Os PageCache busy,判断操作系统PageCache是否繁忙,如果忙,则返回true。想必看到这里大家肯定与我一样好奇,RocketMQ是如何判断pageCache是否繁忙呢?下面会重点分析。

代码@2:transientStorePool是否不足。

2.2.1 isOSPageCacheBusy()

DefaultMessageStore#isOSPageCacheBusy()

代码语言:javascript
复制
1public boolean isOSPageCacheBusy() {
2    long begin = this.getCommitLog().getBeginTimeInLock();  // @1 start
3    long diff = this.systemClock.now() - begin;                         // @1  end
4
5    return diff < 10000000
6                && diff > this.messageStoreConfig.getOsPageCacheBusyTimeOutMills();     // @2
7}

代码@1:先重点解释begin、diff两个局部变量的含义:

  • begin 通俗的一点讲,就是将消息写入Commitlog文件所持有锁的时间,精确说是将消息体追加到内存映射文件(DirectByteBuffer)或pageCache(FileChannel#map)该过程中开始持有锁的时间戳,具体的代码请参考:CommitLog#putMessage。
  • diff 一次消息追加过程中持有锁的总时长,即往内存映射文件或pageCache追加一条消息所耗时间。

代码@2:如果一次消息追加过程的时间超过了Broker配置文件osPageCacheBusyTimeOutMills,则认为pageCache繁忙,osPageCacheBusyTimeOutMills默认值为1000,表示1s。

2.2.2 isTransientStorePoolDeficient()

DefaultMessageStore#isTransientStorePoolDeficient

代码语言:javascript
复制
1public boolean isTransientStorePoolDeficient() {
2    return remainTransientStoreBufferNumbs() == 0;
3}
4public int remainTransientStoreBufferNumbs() {
5    return this.transientStorePool.remainBufferNumbs();
6}

最终调用TransientStorePool#remainBufferNumbs方法。

代码语言:javascript
复制
1public int remainBufferNumbs() {
2        if (storeConfig.isTransientStorePoolEnable()) {
3            return availableBuffers.size();
4        }
5        return Integer.MAX_VALUE;
6}

如果启用transientStorePoolEnable机制,返回当前可用的ByteBuffer个数,即整个isTransientStorePoolDeficient方法的用意是是否还存在可用的ByteBuffer,如果不存在,即表示pageCache繁忙。那什么是transientStorePoolEnable机制呢?

2.3 漫谈transientStorePoolEnable机制

Java NIO的内存映射机制,提供了将文件系统中的文件映射到内存机制,实现对文件的操作转换对内存地址的操作,极大的提高了IO特性,但这部分内存并不是常驻内存,可以被置换到交换内存(虚拟内存),RocketMQ为了提高消息发送的性能,引入了内存锁定机制,即将最近需要操作的commitlog文件映射到内存,并提供内存锁定功能,确保这些文件始终存在内存中,该机制的控制参数就是transientStorePoolEnable。

2.3.1 MappedFile

重点关注MappedFile的ByteBuffer writeBuffer、MappedByteBuffer mappedByteBuffer这两个属性的初始化,因为这两个方法是写消息与查消息操作的直接数据结构。

两个关键点如下:

  • ByteBuffer writeBuffer 如果开启了transientStorePoolEnable,则使用ByteBuffer.allocateDirect(fileSize),创建(java.nio的内存映射机制)。如果未开启,则为空。
  • MappedByteBuffer mappedByteBuffer 使用FileChannel#map方法创建,即真正意义上的PageCache。

消息写入时:

MappedFile#appendMessagesInner

从中可见,在消息写入时,如果writerBuffer不为空,说明开启了transientStorePoolEnable机制,则消息首先写入writerBuffer中,如果其为空,则写入mappedByteBuffer中。

消息拉取(读消息):

MappedFile#selectMappedBuffer

消息读取时,是从mappedByteBuffer中读(pageCache)。

大家是不是发现了一个有趣的点,如果开启transientStorePoolEnable机制,是不是有了读写分离的效果,先写入writerBuffer中,读却是从mappedByteBuffer中读取。

为了对transientStorePoolEnable引入意图阐述的更加明白,这里我引入Rocketmq社区贡献者胡宗棠关于此问题的见解。

通常有如下两种方式进行读写:

  1. 第一种,Mmap+PageCache的方式,读写消息都走的是pageCache,这样子读写都在pagecache里面不可避免会有锁的问题,在并发的读写操作情况下,会出现缺页中断降低,内存加锁,污染页的回写。
  2. 第二种,DirectByteBuffer(堆外内存)+PageCache的两层架构方式,这样子可以实现读写消息分离,写入消息时候写到的是DirectByteBuffer——堆外内存中,读消息走的是PageCache(对于,DirectByteBuffer是两步刷盘,一步是刷到PageCache,还有一步是刷到磁盘文件中),带来的好处就是,避免了内存操作的很多容易堵的地方,降低了时延,比如说缺页中断降低,内存加锁,污染页的回写。

温馨提示:如果想与胡宗棠大神进一步沟通交流,可以关注他的github账号:https://github.com/zongtanghu

不知道大家会不会有另外一个担忧,如果开启了transientStorePoolEnable,内存锁定机制,那是不是随着commitlog文件的不断增加,最终导致内存溢出?

2.3.2 TransientStorePool初始化

从这里可以看出,TransientStorePool默认会初始化5个DirectByteBuffer(对外内存),并提供内存锁定功能,即这部分内存不会被置换,可以通过transientStorePoolSize参数控制。

在消息写入消息时,首先从池子中获取一个DirectByteBuffer进行消息的追加。当5个DirectByteBuffer全部写满消息后,该如何处理呢?从RocketMQ的设计中来看,同一时间,只会对一个commitlog文件进行顺序写,写完一个后,继续创建一个新的commitlog文件。故TransientStorePool的设计思想是循环利用这5个DirectByteBuffer,只需要写入到DirectByteBuffer的内容被提交到PageCache后,即可重复利用。对应的代码如下: TransientStorePool#returnBuffer

代码语言:javascript
复制
1public void returnBuffer(ByteBuffer byteBuffer) {
2    byteBuffer.position(0);
3    byteBuffer.limit(fileSize);
4    this.availableBuffers.offerFirst(byteBuffer);
5}

其调用栈如下:

从上面的分析看来,并不会随着消息的不断写入而导致内存溢出。

现象解答

3.1 [REJECTREQUEST]system busy

其抛出的源码入口点:NettyRemotingAbstract#processRequestCommand,上面的原理分析部分已经详细介绍其实现原理,总结如下。

在不开启transientStorePoolEnable机制时,如果Broker PageCache繁忙时则抛出上述错误,判断PageCache繁忙的依据就是向PageCache追加消息时,如果持有锁的时间超过1s,则会抛出该错误;在开启transientStorePoolEnable机制时,其判断依据是如果TransientStorePool中不存在可用的堆外内存时抛出该错误。

3.2 too many requests

其抛出的源码入口点:NettyRemotingAbstract#processRequestCommand,其调用地方紧跟3.1,是在向线程池执行任务时,被线程池拒绝执行时抛出的,我们可以顺便看看Broker消息处理发送的线程信息: BrokerController#registerProcessor

该线程池的队列长度默认为10000,我们可以通过sendThreadPoolQueueCapacity来改变默认值。

3.3 [PC_SYNCHRONIZED]broker busy

其抛出的源码入口点:DefaultMessageStore#putMessage,在进行消息追加时,再一次判断PageCache是否繁忙,如果繁忙,则抛出上述错误。

3.4 broker busy, period in queue: %sms, size of queue: %d

其抛出源码的入口点:BrokerFastFailure#cleanExpiredRequest。该方法的调用频率为每隔10s中执行一次,不过有一个执行前提条件就是Broker端要开启快速失败,默认为开启,可以通过参数brokerFastFailureEnable来设置。该方法的实现要点是每隔10s,检测一次,如果检测到PageCache繁忙,并且发送队列中还有排队的任务,则直接不再等待,直接抛出系统繁忙错误,使正在排队的线程快速失败,结束等待。

实践建议

经过上面的原理讲解与现象分析,消息发送时抛出system busy、broker busy的原因都是PageCache繁忙,那是不是可以通过调整上述提到的某些参数来避免抛出错误呢?.例如如下参数:

  • osPageCacheBusyTimeOutMills 设置PageCache系统超时的时间,默认为1000,表示1s,那是不是可以把增加这个值,例如设置为2000或3000。作者观点:非常不可取。
  • sendThreadPoolQueueCapacity Broker服务器处理的排队队列,默认为10000,如果队列中积压了10000个请求,则会抛出RejectExecutionException。作者观点:不可取。
  • brokerFastFailureEnable 是否启用快速失败,默认为true,表示当如果发现Broker服务器的PageCache繁忙,如果发现sendThreadPoolQueue队列中不为空,表示还有排队的发送请求在排队等待执行,则直接结束等待,返回broker busy。那如果不开启快速失败,则同样可以避免抛出这个错误。作者观点:非常不可取。

修改上述参数,都不可取,原因是出现system busy、broker busy这个错误,其本质是系统的PageCache繁忙,通俗一点讲就是向PageCache追加消息时,单个消息发送占用的时间超过1s了,如果继续往该Broker服务器发送消息并等待,其TPS根本无法满足,哪还是高性能的消息中间了呀。故才会采用快速失败机制,直接给消息发送者返回错误,消息发送者默认情况会重试2次,将消息发往其他Broker,保证其高可用。

下面根据个人的见解,提出如下解决办法:

4.1 开启transientStorePoolEnable

在broker配置文件中将transientStorePoolEnable设置为true。

  • 方案依据: 启用“读写”分离,消息发送时消息先追加到DirectByteBuffer(堆外内存)中,然后在异步刷盘机制下,会将DirectByteBuffer中的内容提交到PageCache,然后刷写到磁盘。消息拉取时,直接从PageCache中拉取,实现了读写分离,减轻了PageCaceh的压力,能从根本上解决该问题。
  • 方案缺点: 会增加数据丢失的可能性,如果Broker JVM进程异常退出,提交到PageCache中的消息是不会丢失的,但存在堆外内存(DirectByteBuffer)中但还未提交到PageCache中的这部分消息,将会丢失。但通常情况下,RocketMQ进程退出的可能性不大。
4.2 扩容Broker服务器

方案依据:

当Broker服务器自身比较忙的时候,快速失败,并且在接下来的一段时间内会规避该Broker,这样该Broker恢复提供了时间保证,Broker本身的架构是支持分布式水平扩容的,增加Topic的队列数,降低单台Broker服务器的负载,从而避免出现PageCache。

温馨提示:在Broker扩容时候,可以复制集群中任意一台Broker服务下${ROCKETMQ_HOME}/store/config/topics.json到新Broker服务器指定目录,避免在新Broker服务器上为Broker创建队列,然后消息发送者、消息消费者都能动态获取Topic的路由信息。

与之扩容对应的,也可以通过对原有Broker进行升配,例如增加内存、把机械盘换成SSD,但这种情况,通常需要重启Broekr服务器,没有扩容来的方便。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-06-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 码农沉思录 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 现象
  • 原理解读
    • 2.1 RocketMQ 网络处理机制概述
      • 2.2 pair.getObject1().rejectRequest()
        • 2.2.1 isOSPageCacheBusy()
          • 2.2.2 isTransientStorePoolDeficient()
            • 2.3 漫谈transientStorePoolEnable机制
              • 2.3.1 MappedFile
                • MappedFile#appendMessagesInner
                  • MappedFile#selectMappedBuffer
                    • 2.3.2 TransientStorePool初始化
                    • 现象解答
                      • 3.1 [REJECTREQUEST]system busy
                        • 3.2 too many requests
                          • 3.3 [PC_SYNCHRONIZED]broker busy
                            • 3.4 broker busy, period in queue: %sms, size of queue: %d
                            • 实践建议
                              • 4.1 开启transientStorePoolEnable
                                • 4.2 扩容Broker服务器
                                相关产品与服务
                                云服务器
                                云服务器(Cloud Virtual Machine,CVM)提供安全可靠的弹性计算服务。 您可以实时扩展或缩减计算资源,适应变化的业务需求,并只需按实际使用的资源计费。使用 CVM 可以极大降低您的软硬件采购成本,简化 IT 运维工作。
                                领券
                                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档