前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >谁说偷窥一定要趴墙头?这个系统可用声波「看见」墙后物体

谁说偷窥一定要趴墙头?这个系统可用声波「看见」墙后物体

作者头像
机器之心
发布2019-06-23 20:27:36
1.3K0
发布2019-06-23 20:27:36
举报
文章被收录于专栏:机器之心

机器之心报道

参与:路、张倩

传统的非视距成像方法多是利用光波进行图像重建,最近斯坦福和英特尔实验室的研究者提出一种新方法,用声波的方式进行穿墙探测,并进行图像重建。该研究表示,声学方法可以「看到」墙那面的多个事物,且允许的距离范围较大,同时成本较低、时间较短。相关研究已被 CVPR 2019 接收。

我站在墙前,想看到拐角处我视线范围之外的事物,除了伸长脖子或者走过去,还有别的方法吗?

非视距成像(Non-line-of-sight (NLOS) imaging)技术利用角落或障碍物周围墙壁反射的光波,重建出图像,从而看到视线之外的事物。但这种光学方法中用到的硬件非常昂贵,且对距离的要求较高。

那么,如果不使用光波,转而使用声波呢?

来自斯坦福大学与英特尔实验室的研究人员想要试试看,他们构建了一个硬件原型 :一个装有现成麦克风和小型汽车扬声器的垂直杆,参见下图:

原型系统图。该原型包括一个垂直安装在 1 米平移台上的 16 个扬声器和麦克风线性阵列。功率放大器和一组音频接口驱动扬声器并从麦克风录音。

在实际操作中,扬声器会发出一串啾啾声,声音以一定角度弹到附近的墙壁上,然后撞到另一面墙上的隐藏物体:一张字母 H 形状的海报板。然后,科学家们一点一点地移动设备,每次都发出更多的声音,最后声音以同样的方式反弹回麦克风。

2D 声学 NLOS 扫描系统的可视化。

接下来,研究人员使用地震成像的算法,对字母 H 的外观进行粗糙重建。

地震学中有类似的问题,利用冲击波进行探测并重建地下结构的图像。

该研究对字母 H 的重建结果如下图所示:

上图只是一个「隐藏物体」的图像重建结果,那么如果有多个隐藏物体,系统也能够很好地执行图像重建吗?

答案是:YES!

下图展示了该系统对 4 个隐藏物体的图像重建结果:

从这些实验结果上来看,利用声音信号进行 NLOS 成像是可行的。那么,它的效果能不能比得上基于光波的 NLOS 成像方法呢?

研究者也进行了对比。如下图所示,给出两个字母 L 和 T,光学方法需要使用的设备比较昂贵,且只能生成 T 的图像,对于距离较远的字母 L 则没有成功重建图像,此外,该方法需要花费的时间较长,超过一小时。

相比之外,该研究所提出的声学方法能够重建出两个字母的图像,且时间较短,只用了四分半钟!距离也比光学方法高出 2 倍。

这项技术距离应用还需要数年的时间,但作者表示,该技术的超声波版本最终可能会应用于自动驾驶汽车上,用来探测看不见的障碍物。或者,你可以用它来监视隔板另一边的同事(可怕!

原理介绍

研究者参数化了声学波场,使得发射扬声器和接收麦克风位于 {(x, y, z)∈R×R×R | z = 0} 平面上。该波场是 τ (x_t, y_t, x_r, y_r, t) 的 5D 函数,其中,x_t、y_t 表示扬声器的空间位置,x_r、y_r 表示麦克风位置,t 表示时间(见图 1 和图 2)。

图 1. 该研究提出的声学 NLOS 成像方法概览图。调制声波从扬声器发出,穿过墙角到达隐藏物体,在反射回来时由一个麦克风记录下来。处理后的测量值(左下)包含峰值,表示声音从扬声器直接传播到麦克风的路径长度(A,峰值被剪切)、传播到墙并回返的路径长度(B),以及到隐藏物体并回返的路径长度(C)。从一系列扬声器和麦克风的位置捕捉这些测量值,用于重建隐藏物体的 3D 几何形状(右下)。

图 2:场景几何和测量值捕获示意图。声阵列发出声信号,该声信号通过墙壁反射到隐藏物体,然后反射回来。由于墙壁在声波波长上的镜面散射,测量数据似乎是从位于墙壁后面的镜像体中捕获的,就好像墙壁是透明的一样。发射信号的频率随时间而线性变化。对于单个反射器来说,返回信号是延迟版的发射信号(右上角)。接收和发射信号混合在一起并进行傅里叶变换,在与反射器距离成正比的频率上产生一个波峰(右下角)。

图 1 和图 2 进一步显示了测量值的几何结构。在声学波长上,墙充当一个类似镜面的反射器,将发射信号 g 散射到拐角,到达隐藏物体,然后返回到声波阵列。

由于墙的镜面散射,在测量中,隐藏物体似乎位于墙外的一个位置。因此研究者选择忽略墙,以使图像重建步骤建模从位于透明墙后面的虚拟对象捕获的测量值。对于同样具有镜面散射的光滑隐藏物体,研究者假设虚拟物体的表面法线指向声阵,这样就可以观测到信号。这一假设也被提出,例如,雷达系统通过墙壁成像并捕获镜面散射 [1, 3, 42]。

如何利用声音

声波散射

下图 3 概述了声波散射双向反射分布函数(BRDF):

图 3:声波散射 BRDF 示意图。在大于波长的平坦表面上进行镜面散射(中左)。在等于波长的墙角几何结构上进行逆反射散射(retroreflective scattering,中右)。对于小于波长的表面,物体周围的衍射会导致漫散射(右)。

信号随距离的衰减

对比光学 NLOS 成像中常见的漫反射,声学信号衰减与 1/(r_t+r_r)^2 成正比,而光学信号衰减与

成正比。研究者在图 4 中通过实验验证了这种衰减。

图 4:信号衰减(左)和分辨率分析(右)。研究者利用 log-log 尺度上的线性回归,绘制了角反射器和平面镜面散射目标的测量值。角反射器的信号衰减约为 d^ −1.92,而平面目标的信号衰减约为 d^−1.89,与预期的 d^−2 衰减基本吻合。图中还展示了漫反射光学 NLOS 成像的 d^−4 衰减。与典型的光学方法相比,该研究给出了一系列声信号带宽范围下不同距离对应的横向分辨率(lateral resolution)。

传输信号

下图 2 描述了信号传输的过程。

如何生成图像

当信号发射位置和接收位置相同时,即 x_t = x_r,y_t = y_r,研究者使用闭合解(closed-form solution)进行图像重建。也就是光学 NLOS 成像方法中所说的「共焦」扫描。研究者对空间位置接近的扬声器和麦克风进行声学共焦测量。

共焦测量能够对隐藏物体的 3D 几何形状进行高效的重建,但是在更常见的非共焦测量情况下如何进行高效重建呢?

研究者首先调整非共焦测量,使其模拟共焦采样网格捕捉到的共焦测量。然后再执行常规的地震成像步骤,即动校正(NMO, normal moveout correction)和倾角时差校正

图 5:动校正和倾角时差校正图示。

下图 6 展示了如何通过非共焦测量,来改善信号质量、提升空间采样。

图 6:在有两个隐藏物体时,图像重建的流程。

实现

除了本文开头所提原型系统所需的硬件设施之外,在软件方面,该系统中所有步骤都使用 Python 实现。目前,该研究已经开源,包含研究所用数据集和软件。

GitHub 地址:https://github.com/computational-imaging/AcousticNLOS

关于该研究更多内容,参见以下视频:

参考链接:

https://www.sciencemag.org/news/2019/06/scientists-use-sound-see-around-corners http://www.computationalimaging.org/publications/acoustic-non-line-of-sight-imaging/ http://www.computationalimaging.org/wp-content/uploads/2019/03/cvpr_2019_2059.pdf

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-06-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器之心 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档