首页
学习
活动
专区
圈层
工具
发布
社区首页 >专栏 >10个不得不知的Python图像处理工具,非常全了!

10个不得不知的Python图像处理工具,非常全了!

作者头像
小白学视觉
发布于 2019-06-20 08:01:49
发布于 2019-06-20 08:01:49
1.1K0
举报
作者:Parul Pandey 编译:ronghuaiyang

导读

10个常用的可以进行图像处理Python库的介绍,可能有些你还没用过,可以试试看!

介绍

我们这个世界充满了数据,而图像是这些数据的重要组成部分。然而,要想使用这些图像,需要对它们进行处理。因此,图像处理是分析和处理数字图像的必要的过程,其主要目的是提高图像质量或从中提取一些信息,然后加以利用。

图像处理中常见的任务包括图像显示、裁剪、翻转、旋转等基本操作、图像分割、分类和特征提取、图像恢复和图像识别。Python成为这种图像处理任务的合适选择。这是因为它作为一种科学编程语言越来越受欢迎,而且在其生态系统中有许多最先进的图像处理工具可以免费使用。

我们来看一些用于图像处理任务的常用Python库。

1. scikit Image

scikit-image是一个开源的Python包,可以使用 numpy 数组。它实现了用于研究、教育和工业应用的算法和实用程序。它是一个相当简单和直接的库,即使对于Python生态系统的新手也是如此。这些代码是由活跃的志愿者社区编写的,具有高质量和同行评审的特性。

资源

它已经通过大量的例子和实际的用例很好地文档化了。阅读文档:(http://scikit-image.org/docs/stable/user_guide.html)。

使用

包被导入为 skimage,大多数函数都在子模块中可以找到。skimage的一些例子包括:

  • 图像滤波
代码语言:javascript
AI代码解释
复制
import matplotlib.pyplot as plt %matplotlib inlinefrom skimage import data,filtersimage = data.coins()# ... or any other NumPy array!edges = filters.sobel(image)plt.imshow(edges, cmap='gray')
  • 使用match template函数进行模板匹配

2. Numpy

Numpy是Python编程中的核心库之一,提供对数组的支持。图像本质上是一个包含数据点像素的标准Numpy数组。因此,通过使用基本的NumPy操作,如切片、屏蔽和花式索引,我们可以修改图像的像素值。可以使用skimage加载图像,并使用matplotlib显示图像。

资源

完整的资源和文档列表可以在Numpy的官方文档页面上找到。

使用

使用Numpy来对图像做掩模

代码语言:javascript
AI代码解释
复制
import numpy as npfrom skimage import dataimport matplotlib.pyplot as plt %matplotlib inlineimage = data.camera()type(image)numpy.ndarray #Image is a numpy arraymask = image < 87image[mask]=255plt.imshow(image, cmap='gray')

3. Scipy

scipy是Python的另一个核心科学模块,类似于Numpy,可用于基本的图像处理和处理任务。特别是子模块 scipy.ndimage。提供在n维NumPy数组上操作的函数。该软件包目前包括线性和非线性滤波、二元形态学、b样条插值和物体测量功能。

资源

获取由 scipy.ndimage 提供的完整函数列表,请参考文档(https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html#correlation-and-convolution)。

使用

用SciPy,使用高斯滤波器来做图像的模糊:

代码语言:javascript
AI代码解释
复制
from scipy import misc,ndimageface = misc.face()blurred_face = ndimage.gaussian_filter(face, sigma=3)very_blurred = ndimage.gaussian_filter(face, sigma=5)#Resultsplt.imshow(<image to be displayed>)

4. PIL/ Pillow

PIL(Python Imaging Library)是Python编程语言的一个免费库,它支持打开、操作和保存许多不同的图像文件格式。然而,随着2009年最后一次发布,它的开发停滞不前。幸运的是,有Pillow,这是PIL的一个积极开发的分支,更容易安装,支持所有主要的操作系统,并支持Python3。该库包含基本的图像处理功能,包括点操作、使用一组内置卷积核进行过滤和颜色空间转换。

资源

文档:https://pillow.readthedocs.io/en/3.1.x/index.html提供了安装说明以及库中每个模块的示例。

使用

在Pillow中使用ImageFilter增强图像:

代码语言:javascript
AI代码解释
复制
from PIL import Image, ImageFilter#Read imageim = Image.open( 'image.jpg' )#Display imageim.show()from PIL import ImageEnhanceenh = ImageEnhance.Contrast(im)enh.enhance(1.8).show("30% more contrast")

5. OpenCV-Python

OpenCV(开放源码计算机视觉库)是最广泛使用的计算机视觉应用程序库之一 *OpenCV- python *是OpenCV的python API。OpenCV-Python不仅速度快,因为后台由用C/ c++编写的代码组成,而且易于编码和部署(由于前台有Python包装器)。这使得它成为执行计算密集型计算机视觉程序的一个很好的选择。

资源

OpenCV2-Python-Guide:https://github.com/abidrahmank/OpenCV2-Python-Tutorials让使用OpenCV-Python变得很容易。

使用

下面的例子展示了OpenCV-Python在Image blend中使用金字塔创建一个名为'Orapple'的新水果。

6. SimpleCV

SimpleCV也是一个用于构建计算机视觉应用程序的开源框架。有了它,你可以访问几个高性能的计算机视觉库,如OpenCV,而不必首先了解位深度、文件格式、颜色空间等。学习曲线大大小于OpenCV,正如他们的口号所说:让计算机视觉变得容易”。一些拥护SimpleCV的观点是:

  • 即使是初学者也可以编写简单的机器视觉测试
  • 摄像头、视频文件、图像和视频流都是可互操作的
资源

官方的文档非常容易理解,并且有大量的例子和用例可以遵循。

使用

7. Mahotas

Mahotas是另一个用于Python的计算机视觉和图像处理库。它包含传统的图像处理功能,如滤波和形态学操作,以及更现代的计算机视觉功能,用于特征计算,包括兴趣点检测和局部描述符。该接口是用Python编写的,适合于快速开发,但是算法是用c++实现的,并且针对速度进行了调优。Mahotas库速度快,代码简洁,甚至具有最小的依赖性。阅读他们的官方论文以获得更多的了解。

资源

官方文档包含安装说明、示例甚至一些教程,可以帮助你轻松地开始使用。

使用

Mahotas库依赖于使用简单的代码来完成任务。对于“查找Wally''的问题,Mahotas做得很好,而且只需要最少的代码。这是源代码。

8. SimpleITK

ITK或Insight Segmentation and Registration Toolkit是一个开源的跨平台系统,为开发人员提供了一套广泛的图像分析软件工具。其中,SimpleITK是构建在ITK之上的一个简化层,旨在促进其在快速原型设计、教育和解释语言中的使用。SimpleITK是一个图像分析工具包,包含大量支持一般过滤操作、图像分割和注册的组件。SimpleITK本身是用c++编写的,但是可以用于包括Python在内的许多编程语言。

资源

提供了大量Jupyter Notebooks,用来说明SimpleITK用于教育和研究活动。这些Notebooks演示了使用SimpleITK使用Python和R编程语言进行交互式图像分析。

使用

下面的动画是用SimpleITK和Python创建的准确的CT/MR登记过程的可视化。阅读源代码在此处:https://github.com/insightsoftwareassocitium/simpleitk-notebooks/blob/master/ties/intro_anim.py。

9. pgmagick

pgmagick是GraphicsMagick库的一个基于python的包装器。图像处理系统有时被称为图像处理的瑞士军刀。它提供了一个健壮而高效的工具和库集合,支持以88种主要格式(包括重要格式,如DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM和TIFF)读取、写入和操作图像。

资源

有一个专门用于PgMagick的Github Repository,其中有安装和需求说明。还有一个关于这个主题的详细user guid。

使用

使用pgmagick可以执行的图像处理活动很少:

图像缩放:

边缘提取:

10. Pycairo

Pycairo是cairo图形库的一组python绑定。Cairo是一个用于绘制矢量图形的2D图形库。矢量图形很有趣,因为它们在调整大小或转换时不会失去清晰度。Pycairo是cairo的一组绑定,可用于从Python调用cairo命令。

资源

Pycairo GitHub repository是一个很好的资源,有关于安装和使用的详细说明。还有一个入门指南,其中有一个关于Pycairo的简短教程。

使用

使用Pycairo绘制线条、基本形状和径向梯度

总结

这些是Python中一些有用且免费的图像处理库。有些是众所周知的,有些可能对你来说是新的。可以试着多了解一下。

—END—

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-06-19,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 小白学视觉 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
Python与图像处理:从基础操作到智能应用的全面解析
在人工智能与大数据蓬勃发展的今天,图像处理已成为连接视觉世界与数字智能的关键桥梁。Python凭借其丰富的生态库和简洁的语法,成为图像处理领域的首选语言。本文将系统解析Python在图像处理中的核心优势、关键技术及实战应用,帮助开发者快速掌握这一领域的知识脉络。
富贵软件
2025/08/28
2670
Python与图像处理:从基础操作到智能应用的全面解析
十个python图像处理工具
【磐创AI导读】:本篇文章为大家介绍了十个python图像处理工具,希望对大家有所帮助。想要获取更多的机器学习、深度学习资源,欢迎大家点击上方蓝字关注我们的公众号:磐创AI。
磐创AI
2019/09/03
1.8K0
十个python图像处理工具
常用的十大python图像处理工具
今天,在我们的世界里充满了数据,图像成为构成这些数据的重要组成部分。但无论是用于何种用途,这些图像都需要进行处理。图像处理就是分析和处理数字图像的过程,主要旨在提高其质量或从中提取一些信息,然后可以将其用于某种用途。
AI研习社
2019/07/04
1.5K0
常用的十大python图像处理工具
10个Python图像编辑工具,学好python就靠它们!
当今的世界充满了数据,而图像数据就是其中很重要的一部分。但只有经过处理和分析,提高图像的质量,从中提取出有效地信息,才能利用到这些图像数据。
一墨编程学习
2019/04/22
1.6K0
10个Python图像编辑工具,学好python就靠它们!
整理 Python 中的图像处理利器(共10个)
当今世界充满了各种数据,而图像是其中高的重要组成部分。然而,若想其有所应用,我们需要对这些图像进行处理。图像处理是分析和操纵数字图像的过程,旨在提高其质量或从中提取一些信息,然后将其用于某些方面。
Python知识大全
2021/10/26
1.5K0
整理 Python 中的图像处理利器(共10个)
10 个不可不知的 Python 图像处理工具 !
今天的世界充满了数据,图像是这些数据的重要组成部分。但是,在使用它们之前,必须对这些数字图像进行处理 - 分析和操作,以提高其质量或提取一些可以使用的信息。
小小詹同学
2019/05/17
1.2K0
10个Python图像处理工具分享
来源商业新知网,原标题:干货整理!10个Python图像处理工具,入门必看,提效大法 | 资源
商业新知
2019/05/31
1.2K0
10个Python图像处理工具分享
收藏!10 个 Python 图像处理工具
今天的世界充满了数据,图像是这些数据的重要组成部分。但是,在使用它们之前,必须对这些数字图像进行处理 - 分析和操作,以提高其质量或提取一些可以使用的信息。
网名重要么
2023/06/07
7040
收藏!10 个 Python 图像处理工具
技能 | Python处理图像10大经典库
scikit-image是一个与numpy数组配合使用的开源Python包,在学术研究、教育和行业领域都可应用。
小白学视觉
2022/04/06
1.5K0
技能 | Python处理图像10大经典库
简单易懂最常用的Python图像处理库
当今世界充满了各种数据,而图像是其中高的重要组成部分。然而,若想其有所应用,我们需要对这些图像进行处理。图像处理是分析和操纵数字图像的过程,旨在提高其质量或从中提取一些信息,然后将其用于某些方面。
商业新知
2019/06/11
2.9K0
简单易懂最常用的Python图像处理库
10个Python图像处理工具
scikit-image是一个与numpy数组配合使用的开源Python包,在学术研究、教育和行业领域都可应用。
量子位
2019/05/30
1.2K0
10 个图像处理的Python库
Pillow是一个通用且用户友好的Python库,提供了丰富的函数集和对各种图像格式的支持,使其成为开发人员在其项目中处理图像的必要工具。
数据STUDIO
2023/09/04
1.2K0
10 个图像处理的Python库
10个图像处理的Python库
在这篇文章中,我们将整理计算机视觉项目中常用的Python库,如果你想进入计算机视觉领域,可以先了解下本文介绍的库,这会对你的工作很有帮助。
deephub
2023/08/30
6880
10个图像处理的Python库
用于图像处理的Python顶级库 !!
正如IDC所指出的,数字信息将飙升至175ZB,而这些信息中的巨大一部分是图片。数据科学家需要(预先)测量这些图像,然后再将它们放入人工智能和深度学习模型中。在愉快的部分开始之前,他们需要做重要的工作。
JOYCE_Leo16
2024/03/19
6950
用于图像处理的Python顶级库 !!
【干货】计算机视觉实战系列08——用Python做图像处理
【导读】在前面几讲中,专知成员Hui介绍了PIL、Matplotlib、Numpy、SciPy等Python图像处理的工具包。这一讲中,我们将介绍一个具体的实例——图像去噪,作为前面几讲的总结。 【干货】计算机视觉实战系列01——用Python做图像处理(基本的图像操作和处理) 【干货】计算机视觉实战系列02——用Python做图像处理(Matplotlib基本的图像操作和处理) 【干货】计算机视觉实战系列03——用Python做图像处理(Numpy基本操作和图像灰度变换) 【干货】计算机视觉实战系列04—
WZEARW
2018/06/05
1.4K0
【干货】计算机视觉实战系列07——用Python做图像处理
这一次继续为大家详细讲解SciPy库的使用以及图像导数实战。
WZEARW
2018/04/25
2.5K4
【干货】计算机视觉实战系列07——用Python做图像处理
Python机器学习、深度学习库总结(内含大量示例,建议收藏)
目前,随着人工智能的大热,吸引了诸多行业对于人工智能的关注,同时也迎来了一波又一波的人工智能学习的热潮,虽然人工智能背后的原理并不能通过短短一文给予详细介绍,但是像所有学科一样,我们并不需要从头开始”造轮子“,可以通过使用丰富的人工智能框架来快速构建人工智能模型,从而入门人工智能的潮流。人工智能指的是一系列使机器能够像人类一样处理信息的技术;机器学习是利用计算机编程从历史数据中学习,对新数据进行预测的过程;神经网络是基于生物大脑结构和特征的机器学习的计算机模型;深度学习是机器学习的一个子集,它处理大量的非结构化数据,如人类的语音、文本和图像。因此,这些概念在层次上是相互依存的,人工智能是最广泛的术语,而深度学习是最具体的:
润森
2022/09/22
3.5K0
Python机器学习、深度学习库总结(内含大量示例,建议收藏)
Python数字图像处理-3种图像读取方式总结
学习数字图像处理,第一步就是读取图像。这里我总结下如何使用 opencv3,scikit-image, PIL 图像处理库读取图片并显示。
嵌入式视觉
2022/09/05
1.8K0
Python数字图像处理-3种图像读取方式总结
最佳的图像处理工具python扩展库
在当今这个社会,数据就是财富,数据就是金钱,一切都离不开数据,我们看到的一切图片,本质上都是数据,如何理解和处理这些图像数据是很大的难题,不过庆幸的是,在 python 中,已经有了非常丰富的扩展来帮助我们处理这些图片。
程序那些事儿
2023/03/07
7940
最佳的图像处理工具python扩展库
【Python】教你彻底了解Python中的图像处理与计算机视觉
​​​图像处理与计算机视觉是人工智能的两个重要分支,旨在通过计算机对图像进行处理和分析,从中提取有用的信息。在Python中,有许多强大的库和工具可以用于图像处理与计算机视觉。本文将深入探讨Python在图像处理与计算机视觉中的应用,涵盖图像处理与计算机视觉的基本概念、常用的图像处理库、基本图像操作、图像滤波与变换、特征检测与匹配、对象检测与识别,以及一些实际应用示例。
E绵绵
2025/05/25
5100
推荐阅读
相关推荐
Python与图像处理:从基础操作到智能应用的全面解析
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
首页
学习
活动
专区
圈层
工具
MCP广场
首页
学习
活动
专区
圈层
工具
MCP广场