前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >ffplay源码分析3-代码框架

ffplay源码分析3-代码框架

作者头像
叶余
修改2019-04-27 17:00:00
2.9K2
修改2019-04-27 17:00:00
举报
文章被收录于专栏:音视频开发技术

本文为作者原创,转载请注明出处:https://www.cnblogs.com/leisure_chn/p/10301831.html

ffplay是FFmpeg工程自带的简单播放器,使用FFmpeg提供的解码器和SDL库进行视频播放。本文基于FFmpeg工程4.1版本进行分析,其中ffplay源码清单如下:

https://github.com/FFmpeg/FFmpeg/blob/n4.1/fftools/ffplay.c

在尝试分析源码前,可先阅读如下参考文章作为铺垫:

  1. 雷霄骅,视音频编解码技术零基础学习方法
  2. 视频编解码基础概念
  3. 色彩空间与像素格式
  4. 音频参数解析
  5. FFmpeg基础概念

“ffplay源码分析”系列文章如下:

  1. ffplay源码分析1-概述
  2. ffplay源码分析2-数据结构
  3. ffplay源码分析3-代码框架
  4. ffplay源码分析4-音视频同步
  5. ffplay源码分析5-图像格式转换
  6. ffplay源码分析6-音频重采样
  7. ffplay源码分析7-播放控制

3. 代码框架

本节简单梳理ffplay.c代码框架。一些关键问题及细节问题在后续章节探讨。

3.1 流程图

ffplay流程图
ffplay流程图

3.2 主线程

主线程主要实现三项功能:视频播放(音视频同步)、字幕播放、SDL消息处理。

主线程在进行一些必要的初始化工作、创建解复用线程后,即进入event_loop()主循环,处理视频播放和SDL消息事件:

代码语言:txt
复制
main() -->
static void event_loop(VideoState *cur_stream)
{
    SDL_Event event;
    ......

    for (;;) {
        // SDL event队列为空,则在while循环中播放视频帧。否则从队列头部取一个event,退出当前函数,在上级函数中处理event
        refresh_loop_wait_event(cur_stream, &event);
        // SDL事件处理
        switch (event.type) {
        case SDL_KEYDOWN:
            switch (event.key.keysym.sym) {
            case SDLK_f:            // f键:强制刷新
                ......
                break;
            case SDLK_p:            // p键
            case SDLK_SPACE:        // 空格键:暂停
                ......
            case SDLK_s:            // s键:逐帧播放
                ......
                break;
            ......
        ......
        }
    }
}

3.2.1 视频播放

主要代码在refresh_loop_wait_event()函数中,如下:

代码语言:txt
复制
static void refresh_loop_wait_event(VideoState *is, SDL_Event *event) {
    double remaining_time = 0.0;
    SDL_PumpEvents();
    while (!SDL_PeepEvents(event, 1, SDL_GETEVENT, SDL_FIRSTEVENT, SDL_LASTEVENT)) {
        if (!cursor_hidden && av_gettime_relative() - cursor_last_shown > CURSOR_HIDE_DELAY) {
            SDL_ShowCursor(0);
            cursor_hidden = 1;
        }
        if (remaining_time > 0.0)
            av_usleep((int64_t)(remaining_time * 1000000.0));
        remaining_time = REFRESH_RATE;
        if (is->show_mode != SHOW_MODE_NONE && (!is->paused || is->force_refresh))
            // 立即显示当前帧,或延时remaining_time后再显示
            video_refresh(is, &remaining_time);
        SDL_PumpEvents();
    }
}

while()语句表示如果SDL event队列为空,则在while循环中播放视频帧;否则从队列头部取一个event,退出当前函数,在上级函数中处理event。

refresh_loop_wait_event()中调用了非常关键的函数video_refresh()video_refresh()函数实现音视频的同步及视频帧的显示,是ffplay.c中最核心函数之一,在“4.3节 视频同步到音频”中详细分析。

3.2.2 SDL消息处理

处理各种SDL消息,比如暂停、强制刷新等按键事件。比较简单。

代码语言:txt
复制
main() -->
static void event_loop(VideoState *cur_stream)
{
    SDL_Event event;
    ......

    for (;;) {
        // SDL event队列为空,则在while循环中播放视频帧。否则从队列头部取一个event,退出当前函数,在上级函数中处理event
        refresh_loop_wait_event(cur_stream, &event);
        // SDL事件处理
        switch (event.type) {
        case SDL_KEYDOWN:
            switch (event.key.keysym.sym) {
            case SDLK_f:            // f键:强制刷新
                ......
                break;
            case SDLK_p:            // p键
            case SDLK_SPACE:        // 空格键:暂停
                ......
                break;
            ......
        ......
        }
    }
}

3.3 解复用线程

解复用线程读取视频文件,将取到的packet根据类型(音频、视频、字幕)存入不同是packet队列中。

为节省篇幅,如下源码中非关键内容的源码使用“......”替代。代码流程参考注释。

代码语言:txt
复制
/* this thread gets the stream from the disk or the network */
static int read_thread(void *arg)
{
    VideoState *is = arg;
    AVFormatContext *ic = NULL;
    int st_index[AVMEDIA_TYPE_NB];
    ......

    ......
    
    // 中断回调机制。为底层I/O层提供一个处理接口,比如中止IO操作。
    ic->interrupt_callback.callback = decode_interrupt_cb;
    ic->interrupt_callback.opaque = is;
    if (!av_dict_get(format_opts, "scan_all_pmts", NULL, AV_DICT_MATCH_CASE)) {
        av_dict_set(&format_opts, "scan_all_pmts", "1", AV_DICT_DONT_OVERWRITE);
        scan_all_pmts_set = 1;
    }
    // 1. 构建AVFormatContext
    // 1.1 打开视频文件:读取文件头,将文件格式信息存储在"fmt context"中
    err = avformat_open_input(&ic, is->filename, is->iformat, &format_opts);
    
    ......

    if (find_stream_info) {
        ......
        // 1.2 搜索流信息:读取一段视频文件数据,尝试解码,将取到的流信息填入ic->streams
        //     ic->streams是一个指针数组,数组大小是ic->nb_streams
        err = avformat_find_stream_info(ic, opts);
        ......
    }

    ......

    // 2. 查找用于解码处理的流
    // 2.1 将对应的stream_index存入st_index[]数组
    if (!video_disable)
        st_index[AVMEDIA_TYPE_VIDEO] =          // 视频流
            av_find_best_stream(ic, AVMEDIA_TYPE_VIDEO,
                                st_index[AVMEDIA_TYPE_VIDEO], -1, NULL, 0);
    if (!audio_disable)
        st_index[AVMEDIA_TYPE_AUDIO] =          // 音频流
            av_find_best_stream(ic, AVMEDIA_TYPE_AUDIO,
                                st_index[AVMEDIA_TYPE_AUDIO],
                                st_index[AVMEDIA_TYPE_VIDEO],
                                NULL, 0);
    if (!video_disable && !subtitle_disable)
        st_index[AVMEDIA_TYPE_SUBTITLE] =       // 字幕流
            av_find_best_stream(ic, AVMEDIA_TYPE_SUBTITLE,
                                st_index[AVMEDIA_TYPE_SUBTITLE],
                                (st_index[AVMEDIA_TYPE_AUDIO] >= 0 ?
                                 st_index[AVMEDIA_TYPE_AUDIO] :
                                 st_index[AVMEDIA_TYPE_VIDEO]),
                                NULL, 0);

    is->show_mode = show_mode;
    // 2.2 从待处理流中获取相关参数,设置显示窗口的宽度、高度及宽高比
    if (st_index[AVMEDIA_TYPE_VIDEO] >= 0) {
        AVStream *st = ic->streams[st_index[AVMEDIA_TYPE_VIDEO]];
        AVCodecParameters *codecpar = st->codecpar;
        // 根据流和帧宽高比猜测帧的样本宽高比。
        // 由于帧宽高比由解码器设置,但流宽高比由解复用器设置,因此这两者可能不相等。此函数会尝试返回待显示帧应当使用的宽高比值。
        // 基本逻辑是优先使用流宽高比(前提是值是合理的),其次使用帧宽高比。这样,流宽高比(容器设置,易于修改)可以覆盖帧宽高比。
        AVRational sar = av_guess_sample_aspect_ratio(ic, st, NULL);
        if (codecpar->width)
            // 设置显示窗口的大小和宽高比
            set_default_window_size(codecpar->width, codecpar->height, sar);
    }

    // 3. 创建对应流的解码线程
    /* open the streams */
    if (st_index[AVMEDIA_TYPE_AUDIO] >= 0) {
        // 3.1 创建音频解码线程
        stream_component_open(is, st_index[AVMEDIA_TYPE_AUDIO]);
    }

    ret = -1;
    if (st_index[AVMEDIA_TYPE_VIDEO] >= 0) {
        // 3.2 创建视频解码线程
        ret = stream_component_open(is, st_index[AVMEDIA_TYPE_VIDEO]);
    }
    if (is->show_mode == SHOW_MODE_NONE)
        is->show_mode = ret >= 0 ? SHOW_MODE_VIDEO : SHOW_MODE_RDFT;

    if (st_index[AVMEDIA_TYPE_SUBTITLE] >= 0) {
        // 3.3 创建字幕解码线程
        stream_component_open(is, st_index[AVMEDIA_TYPE_SUBTITLE]);
    }

    ......

    // 4. 解复用处理
    for (;;) {
        // 停止
        ......
        
        // 暂停/继续
        ......
        
        // seek操作
        ......

        ......
        
        // 4.1 从输入文件中读取一个packet
        ret = av_read_frame(ic, pkt);
        if (ret < 0) {
            if ((ret == AVERROR_EOF || avio_feof(ic->pb)) && !is->eof) {
                // 输入文件已读完,则往packet队列中发送NULL packet,以冲洗(flush)解码器,否则解码器中缓存的帧取不出来
                if (is->video_stream >= 0)
                    packet_queue_put_nullpacket(&is->videoq, is->video_stream);
                if (is->audio_stream >= 0)
                    packet_queue_put_nullpacket(&is->audioq, is->audio_stream);
                if (is->subtitle_stream >= 0)
                    packet_queue_put_nullpacket(&is->subtitleq, is->subtitle_stream);
                is->eof = 1;
            }
            if (ic->pb && ic->pb->error)    // 出错则退出当前线程
                break;
            SDL_LockMutex(wait_mutex);
            SDL_CondWaitTimeout(is->continue_read_thread, wait_mutex, 10);
            SDL_UnlockMutex(wait_mutex);
            continue;
        } else {
            is->eof = 0;
        }
        // 4.2 判断当前packet是否在播放范围内,是则入列,否则丢弃
        /* check if packet is in play range specified by user, then queue, otherwise discard */
        stream_start_time = ic->streams[pkt->stream_index]->start_time; // 第一个显示帧的pts
        pkt_ts = pkt->pts == AV_NOPTS_VALUE ? pkt->dts : pkt->pts;
        // 简化一下"||"后那个长长的表达式:
        // [pkt_pts]  - [stream_start_time] - [start_time]                       <= [duration]
        // [当前帧pts] - [第一帧pts]         - [当前播放序列第一帧(seek起始点)pts] <= [duration]
        pkt_in_play_range = duration == AV_NOPTS_VALUE ||
                (pkt_ts - (stream_start_time != AV_NOPTS_VALUE ? stream_start_time : 0)) *
                av_q2d(ic->streams[pkt->stream_index]->time_base) -
                (double)(start_time != AV_NOPTS_VALUE ? start_time : 0) / 1000000
                <= ((double)duration / 1000000);
        // 4.3 根据当前packet类型(音频、视频、字幕),将其存入对应的packet队列
        if (pkt->stream_index == is->audio_stream && pkt_in_play_range) {
            packet_queue_put(&is->audioq, pkt);
        } else if (pkt->stream_index == is->video_stream && pkt_in_play_range
                   && !(is->video_st->disposition & AV_DISPOSITION_ATTACHED_PIC)) {
            packet_queue_put(&is->videoq, pkt);
        } else if (pkt->stream_index == is->subtitle_stream && pkt_in_play_range) {
            packet_queue_put(&is->subtitleq, pkt);
        } else {
            av_packet_unref(pkt);
        }
    }

    ret = 0;
 fail:
    ......
    return 0;
}

解复用线程实现如下功能:

  1. 创建音频、视频、字幕解码线程
  2. 从输入文件读取packet,根据packet类型(音频、视频、字幕)将这放入不同packet队列

3.4 视频解码线程

视频解码线程从视频packet队列中取数据,解码后存入视频frame队列。

3.4.1 video_thread()

视频解码线程将解码后的帧放入frame队列中。为节省篇幅,如下源码中删除了滤镜filter相关代码。

代码语言:txt
复制
// 视频解码线程:从视频packet_queue中取数据,解码后放入视频frame_queue
static int video_thread(void *arg)
{
    VideoState *is = arg;
    AVFrame *frame = av_frame_alloc();
    double pts;
    double duration;
    int ret;
    AVRational tb = is->video_st->time_base;
    AVRational frame_rate = av_guess_frame_rate(is->ic, is->video_st, NULL);

    if (!frame) {
        return AVERROR(ENOMEM);
    }

    for (;;) {
        ret = get_video_frame(is, frame);
        if (ret < 0)
            goto the_end;
        if (!ret)
            continue;
        
        // 当前帧播放时长
        duration = (frame_rate.num && frame_rate.den ? av_q2d((AVRational){frame_rate.den, frame_rate.num}) : 0);
        // 当前帧显示时间戳
        pts = (frame->pts == AV_NOPTS_VALUE) ? NAN : frame->pts * av_q2d(tb);
        // 将当前帧压入frame_queue
        ret = queue_picture(is, frame, pts, duration, frame->pkt_pos, is->viddec.pkt_serial);
        av_frame_unref(frame);

        if (ret < 0)
            goto the_end;
    }
the_end:
    av_frame_free(&frame);
    return 0;
}

3.4.2 get_video_frame()

从packet队列中取一个packet解码得到一个frame,并判断是否要根据framedrop机制丢弃失去同步的视频帧。参考源码中注释:

代码语言:txt
复制
static int get_video_frame(VideoState *is, AVFrame *frame)
{
    int got_picture;

    if ((got_picture = decoder_decode_frame(&is->viddec, frame, NULL)) < 0)
        return -1;

    if (got_picture) {
        double dpts = NAN;

        if (frame->pts != AV_NOPTS_VALUE)
            dpts = av_q2d(is->video_st->time_base) * frame->pts;

        frame->sample_aspect_ratio = av_guess_sample_aspect_ratio(is->ic, is->video_st, frame);

        // ffplay文档中对"-framedrop"选项的说明: 
        //   Drop video frames if video is out of sync.Enabled by default if the master clock is not set to video.
        //   Use this option to enable frame dropping for all master clock sources, use - noframedrop to disable it.
        // "-framedrop"选项用于设置当视频帧失去同步时,是否丢弃视频帧。"-framedrop"选项以bool方式改变变量framedrop值。
        // 音视频同步方式有三种:A同步到视频,B同步到音频,C同步到外部时钟。
        // 1) 当命令行不带"-framedrop"选项或"-noframedrop"时,framedrop值为默认值-1,若同步方式是"同步到视频"
        //    则不丢弃失去同步的视频帧,否则将丢弃失去同步的视频帧。
        // 2) 当命令行带"-framedrop"选项时,framedrop值为1,无论何种同步方式,均丢弃失去同步的视频帧。
        // 3) 当命令行带"-noframedrop"选项时,framedrop值为0,无论何种同步方式,均不丢弃失去同步的视频帧。
        if (framedrop>0 || (framedrop && get_master_sync_type(is) != AV_SYNC_VIDEO_MASTER)) {
            if (frame->pts != AV_NOPTS_VALUE) {
                double diff = dpts - get_master_clock(is);
                if (!isnan(diff) && fabs(diff) < AV_NOSYNC_THRESHOLD &&
                    diff - is->frame_last_filter_delay < 0 &&
                    is->viddec.pkt_serial == is->vidclk.serial &&
                    is->videoq.nb_packets) {
                    is->frame_drops_early++;
                    av_frame_unref(frame);  // 视频帧失去同步则直接扔掉
                    got_picture = 0;
                }
            }
        }
    }

    return got_picture;
}

ffplay中framedrop处理有两种,一处是此处解码后得到的frame尚未存入frame队列前,以is->frame_drops_early++为标记;另一处是frame队列中读取frame进行显示的时候,以is->frame_drops_late++为标记。

本处framedrop操作涉及的变量is->frame_last_filter_delay属于滤镜filter操作相关,ffplay中默认是关闭滤镜的,本文不考虑滤镜相关操作。

3.4.3 decoder_decode_frame()

这个函数是很核心的一个函数,可以解码视频帧和音频帧。视频解码线程中,视频帧实际的解码操作就在此函数中进行。分析过程参考3.2节。

3.5 音频解码线程

音频解码线程从音频packet队列中取数据,解码后存入音频frame队列

3.5.1 打开音频设备

音频设备的打开实际是在解复用线程中实现的。解复用线程中先打开音频设备(设定音频回调函数供SDL音频播放线程回调),然后再创建音频解码线程。调用链如下:

代码语言:txt
复制
main() -->
stream_open() -->
read_thread() -->
stream_component_open() -->
    audio_open(is, channel_layout, nb_channels, sample_rate, &is->audio_tgt);
    decoder_start(&is->auddec, audio_thread, is);

audio_open()函数填入期望的音频参数,打开音频设备后,将实际的音频参数存入输出参数is->audio_tgt中,后面音频播放线程用会用到此参数。

音频格式的各参数与重采样强相关,audio_open()的详细实现在后面第5节讲述。

3.5.2 audio_thread()

从音频packet_queue中取数据,解码后放入音频frame_queue:

代码语言:txt
复制
// 音频解码线程:从音频packet_queue中取数据,解码后放入音频frame_queue
static int audio_thread(void *arg)
{
    VideoState *is = arg;
    AVFrame *frame = av_frame_alloc();
    Frame *af;
    int got_frame = 0;
    AVRational tb;
    int ret = 0;

    if (!frame)
        return AVERROR(ENOMEM);

    do {
        if ((got_frame = decoder_decode_frame(&is->auddec, frame, NULL)) < 0)
            goto the_end;

        if (got_frame) {
                tb = (AVRational){1, frame->sample_rate};

                if (!(af = frame_queue_peek_writable(&is->sampq)))
                    goto the_end;

                af->pts = (frame->pts == AV_NOPTS_VALUE) ? NAN : frame->pts * av_q2d(tb);
                af->pos = frame->pkt_pos;
                af->serial = is->auddec.pkt_serial;
                // 当前帧包含的(单个声道)采样数/采样率就是当前帧的播放时长
                af->duration = av_q2d((AVRational){frame->nb_samples, frame->sample_rate});

                // 将frame数据拷入af->frame,af->frame指向音频frame队列尾部
                av_frame_move_ref(af->frame, frame);
                // 更新音频frame队列大小及写指针
                frame_queue_push(&is->sampq);
        }
    } while (ret >= 0 || ret == AVERROR(EAGAIN) || ret == AVERROR_EOF);
 the_end:
    av_frame_free(&frame);
    return ret;
}

3.5.3 decoder_decode_frame()

此函数既可以解码音频帧,也可以解码视频帧,函数分析参考3.2节。

3.6 音频播放线程

音频播放线程是SDL内建的线程,通过回调的方式调用用户提供的回调函数。

回调函数在SDL_OpenAudio()时指定。

暂停/继续回调过程由SDL_PauseAudio()控制。

3.6.1 sdl_audio_callback()

音频回调函数如下:

代码语言:txt
复制
// 音频处理回调函数。读队列获取音频包,解码,播放
// 此函数被SDL按需调用,此函数不在用户主线程中,因此数据需要保护
// \param[in]  opaque 用户在注册回调函数时指定的参数
// \param[out] stream 音频数据缓冲区地址,将解码后的音频数据填入此缓冲区
// \param[out] len    音频数据缓冲区大小,单位字节
// 回调函数返回后,stream指向的音频缓冲区将变为无效
// 双声道采样点的顺序为LRLRLR
/* prepare a new audio buffer */
static void sdl_audio_callback(void *opaque, Uint8 *stream, int len)
{
    VideoState *is = opaque;
    int audio_size, len1;

    audio_callback_time = av_gettime_relative();

    while (len > 0) {   // 输入参数len等于is->audio_hw_buf_size,是audio_open()中申请到的SDL音频缓冲区大小
        if (is->audio_buf_index >= is->audio_buf_size) {
           // 1. 从音频frame队列中取出一个frame,转换为音频设备支持的格式,返回值是重采样音频帧的大小
           audio_size = audio_decode_frame(is);
           if (audio_size < 0) {
                /* if error, just output silence */
               is->audio_buf = NULL;
               is->audio_buf_size = SDL_AUDIO_MIN_BUFFER_SIZE / is->audio_tgt.frame_size * is->audio_tgt.frame_size;
           } else {
               if (is->show_mode != SHOW_MODE_VIDEO)
                   update_sample_display(is, (int16_t *)is->audio_buf, audio_size);
               is->audio_buf_size = audio_size;
           }
           is->audio_buf_index = 0;
        }
        // 引入is->audio_buf_index的作用:防止一帧音频数据大小超过SDL音频缓冲区大小,这样一帧数据需要经过多次拷贝
        // 用is->audio_buf_index标识重采样帧中已拷入SDL音频缓冲区的数据位置索引,len1表示本次拷贝的数据量
        len1 = is->audio_buf_size - is->audio_buf_index;
        if (len1 > len)
            len1 = len;
        // 2. 将转换后的音频数据拷贝到音频缓冲区stream中,之后的播放就是音频设备驱动程序的工作了
        if (!is->muted && is->audio_buf && is->audio_volume == SDL_MIX_MAXVOLUME)
            memcpy(stream, (uint8_t *)is->audio_buf + is->audio_buf_index, len1);
        else {
            memset(stream, 0, len1);
            if (!is->muted && is->audio_buf)
                SDL_MixAudioFormat(stream, (uint8_t *)is->audio_buf + is->audio_buf_index, AUDIO_S16SYS, len1, is->audio_volume);
        }
        len -= len1;
        stream += len1;
        is->audio_buf_index += len1;
    }
    // is->audio_write_buf_size是本帧中尚未拷入SDL音频缓冲区的数据量
    is->audio_write_buf_size = is->audio_buf_size - is->audio_buf_index;
    /* Let's assume the audio driver that is used by SDL has two periods. */
    // 3. 更新时钟
    if (!isnan(is->audio_clock)) {
        // 更新音频时钟,更新时刻:每次往声卡缓冲区拷入数据后
        // 前面audio_decode_frame中更新的is->audio_clock是以音频帧为单位,所以此处第二个参数要减去未拷贝数据量占用的时间
        set_clock_at(&is->audclk, is->audio_clock - (double)(2 * is->audio_hw_buf_size + is->audio_write_buf_size) / is->audio_tgt.bytes_per_sec, is->audio_clock_serial, audio_callback_time / 1000000.0);
        // 使用音频时钟更新外部时钟
        sync_clock_to_slave(&is->extclk, &is->audclk);
    }
}

3.6.2 audio_decode_frame()

audio_decode_frame()主要是进行音频重采样,从音频frame队列中取出一个frame,此frame的格式是输入文件中的音频格式,音频设备不一定支持这些参数,所以要将frame转换为音频设备支持的格式。

audio_decode_frame()的实现在后面第5节讲述。

3.7 字幕解码线程

实现细节略。以后有机会研究字幕时,再作补充。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019-01-22 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 3. 代码框架
    • 3.1 流程图
      • 3.2 主线程
        • 3.2.1 视频播放
        • 3.2.2 SDL消息处理
      • 3.3 解复用线程
        • 3.4 视频解码线程
          • 3.4.1 video_thread()
          • 3.4.2 get_video_frame()
          • 3.4.3 decoder_decode_frame()
        • 3.5 音频解码线程
          • 3.5.1 打开音频设备
          • 3.5.2 audio_thread()
          • 3.5.3 decoder_decode_frame()
        • 3.6 音频播放线程
          • 3.6.1 sdl_audio_callback()
          • 3.6.2 audio_decode_frame()
        • 3.7 字幕解码线程
        相关产品与服务
        容器服务
        腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档