前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >梯度下降法原理与python实现

梯度下降法原理与python实现

作者头像
用户1432189
发布2019-03-04 14:59:57
2.1K0
发布2019-03-04 14:59:57
举报
文章被收录于专栏:zingpLiu
  • 梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法
  • 本文将从最优化问题谈起,回顾导数与梯度的概念,引出梯度下降的数据推导;概括三种梯度下降方法的优缺点,并用Python实现梯度下降(附源码)。

1 最优化问题

  • 最优化问题是求解函数极值的问题,包括极大值和极小值。
  • 微积分为我们求函数的极值提供了一个统一的思路:找函数的导数等于0的点,因为在极值点处,导数必定为0。这样,只要函数的可导的,我们就可以用这个万能的方法解决问题,幸运的是,在实际应用中我们遇到的函数基本上都是可导的。
  • 机器学习之类的实际应用中,我们一般将最优化问题统一表述为求解函数的极小值问题,即: \[ min_xf(x) \]
  • 其中\(x\)称为优化变量,\(f\)称为目标函数。极大值问题可以转换成极小值问题来求解,只需要将目标函数加上负号即可: \[min_x{-f(x)}\]

2 导数与梯度

  • 梯度是多元函数对各个自变量偏导数形成的向量。多元函数的梯度表示: \[\nabla f(x) = \left( \frac{\partial f}{\partial x_1},...,\frac{\partial f}{\partial x_n} \right)^T \]
  • 如果Hessian矩阵正定,函数有极小值;如果Hessian矩阵负定,函数有极大值;如果Hessian矩阵不定,则需要进一步讨论。
  • 如果二阶导数大于0,函数有极小值;如果二阶导数小于0,函数有极大值;如果二阶导数等于0,情况不定。

问题:为何不直接求导?

  • 直接求函数的导数,有的函数的导数方程组很难求解,比如下面的方程: \[ f(x,y) = X^5 + e^{x}{y}- y^3 + 10y^2 - 100\sin(xy)-2x^2 \]

3 梯度下降的推导过程

  • 回顾一下泰勒展开式 \[ f(x) = \frac{f(x_0)}{0!} + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + ... + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + R_n(x) \]
  • 多元函数\(f(x)\)在x处的泰勒展开: \[ f(x + \Delta x) = f(x) + f'(x)\Delta x + \frac{1}{2}f''(x) \Delta x^2 + ...\]

3.1 数学推导

目标是求多元函数\(f(x)\)的极小值梯度下降法是通过不断迭代得到函数极小值,即如能保证\(f(x +\Delta x)\)比\(f(x)\)小,则不断迭代,最终能得到极小值。想象你在山顶往山脚走,如果每一步到的位置比之前的位置低,就能走到山脚。问题是像哪个方向走,能最快到山脚呢? 由泰勒展开式得: \[f(x + \Delta x) - f(x) = (\nabla f(x))^T \Delta x + o(\Delta x) \] 如果\(\Delta x\)足够小,可以忽略\(o(\Delta x)\),则有: \[f(x + \Delta x) - f(x) \approx (\nabla f(x))^T \Delta x\] 于是只有: \[(\nabla f(x))^T \Delta x < 0 \] 能使 \[ f(x + \Delta x) < f(x) \] 因为\(\nabla f(x)\)与\(\Delta x\)均为向量,于是有: \[ (\nabla f(x))^T \Delta x = \| \nabla f(x)\|\|\Delta x\|cos\theta\] 其中,\(\theta\)是向量\(\nabla f(x)\)与\(\Delta x\)的夹角,\(\| \nabla f(x)\|\)与\(\|\Delta x\|\)是向量对应的模。可见只有当 \[cos\theta < 0\] 才能使得 \[ (\nabla f(x))^T \Delta x < 0 \] 又因 \[ cos\theta \ge -1 \] 可见,只有当 \[cos\theta = -1\] 即\(\theta = \pi\)时,函数数值降低最快。此时梯度和\(\Delta x\)反向,即夹角为180度。因此当向量\(\Delta x\)的模大小一定时,取 \[\Delta x = -\alpha \nabla f(x)\] 即在梯度相反的方向函数值下降的最快。此时函数的下降值为: \[ (\nabla f(x))^T \Delta x = -\| \nabla f(x)\|\|\Delta x\| = - \alpha \| \nabla f(x)\|^2 \] 只要梯度不为\(0\),往梯度的反方向走函数值一定是下降的。直接用可能会有问题,因为\(x+\Delta x\)可能会超出\(x\)的邻域范围之外,此时是不能忽略泰勒展开中的二次及以上的项的,因此步伐不能太大。 一般设: \[\Delta x = -\alpha \nabla f(x)\] 其中\(\alpha\)为一个接近于\(0\)的正数,称为步长,由人工设定,用于保证\(x+\Delta x\)在x的邻域内,从而可以忽略泰勒展开中二次及更高的项,则有: \[ (\nabla f(x))^T \Delta x = -\| \nabla f(x)\|\|\Delta x\| = - \alpha \| \nabla f(x)\|^2 < 0 \] 此时,\(x\)的迭代公式是: \[x_{k+1} = x_k - \alpha \nabla f(x_k)\] 只要没有到达梯度为\(0\)的点,则函数值会沿着序列\(x_{k}\)递减,最终会收敛到梯度为\(0\)的点,这就是梯度下降法。 迭代终止的条件是函数的梯度值为\(0\)(实际实现时是接近于\(0\)),此时认为已经达到极值点。注意我们找到的是梯度为\(0\)的点,这不一定就是极值点,后面会说明。

4 实现的细节

  • 初始值的设定 一般的,对于不带约束条件的优化问题,我们可以将初始值设置为0,或者设置为随机数,对于神经网络的训练,一般设置为随机数,这对算法的收敛至关重要。
  • 学习率的设定 学习率设置为多少,也是实现时需要考虑的问题。最简单的,我们可以将学习率设置为一个很小的正数,如0.001。另外,可以采用更复杂的策略,在迭代的过程中动态的调整学习率的值。比如前1万次迭代为0.001,接下来1万次迭代时设置为0.0001。

5 存在的问题

  • 局部极小值
    • 梯度下降可能在局部最小的点收敛。
  • 鞍点
    • 鞍点是指梯度为0,Hessian矩阵既不是正定也不是负定,即不定的点。如函数\(x^2-y^2\)在\((0,0)\)点梯度为0,但显然不是局部最小的点,也不是全局最小的点。

6 三种梯度下降的实现

  • 批量梯度下降法:Batch Gradient Descent,简称BGD。求解梯度的过程中用了全量数据。
    • 全局最优解;易于并行实现。
    • 计算代价大,数据量大时,训练过程慢。
  • 随机梯度下降法:Stochastic Gradient Descent,简称SGD。依次选择单个样本计算梯度。
    • 优点:训练速度快;
    • 缺点:准确度下降,并不是全局最优;不易于并行实现。
  • 小批量梯度下降法:Mini-batch Gradient Descent,简称MBGD。每次更新参数时使用b个样本。(b一般为10)。
    • 两种方法的性能之间取得一个折中。

7 用梯度下降法求解多项式极值

7.1 题目

\(argmin\frac{1}{2}[(x_{1}+x_{2}-4)^2 + (2x_{1}+3x_{2}-7)^2 + (4x_{1}+x_{2}-9)^2]\)

7.2 python解题

以下只是为了演示计算过程,便于理解梯度下降,代码仅供参考。更好的代码我将在以后的文章中给出。

代码语言:javascript
复制
# 原函数
def argminf(x1, x2):
    r = ((x1+x2-4)**2 + (2*x1+3*x2 - 7)**2 + (4*x1+x2-9)**2)*0.5
    return r


# 全量计算一阶偏导的值
def deriv_x(x1, x2):
    r1 = (x1+x2-4) + (2*x1+3*x2-7)*2 + (4*x1+x2-9)*4
    r2 = (x1+x2-4) + (2*x1+3*x2-7)*3 + (4*x1+x2-9)
    return r1, r2

# 梯度下降算法
def gradient_decs(n):
    alpha = 0.01     # 学习率
    x1, x2 = 0, 0    # 初始值
    y1 = argminf(x1, x2)
    for i in range(n):
        deriv1, deriv2 = deriv_x(x1, x2)
        x1 = x1 - alpha * deriv1
        x2 = x2 - alpha * deriv2
        y2 = argminf(x1, x2)
        if y1 - y2 < 1e-6:
            return x1, x2, y2
        if y2 < y1:
            y1 = y2
    return x1, x2, y2

# 迭代1000次结果
gradient_decs(1000)
# (1.9987027392533656, 1.092923742270406, 0.4545566995437954)

参考文献

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019-02-13 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 最优化问题
  • 2 导数与梯度
    • 问题:为何不直接求导?
    • 3 梯度下降的推导过程
      • 3.1 数学推导
      • 4 实现的细节
      • 5 存在的问题
      • 6 三种梯度下降的实现
      • 7 用梯度下降法求解多项式极值
        • 7.1 题目
          • 7.2 python解题
          • 参考文献
          相关产品与服务
          对象存储
          对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档