前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >详解亿级大数据表的几种建立分区表的方式

详解亿级大数据表的几种建立分区表的方式

作者头像
小勇DW3
发布2019-02-25 17:41:45
1.4K0
发布2019-02-25 17:41:45
举报
文章被收录于专栏:小勇DW3
代码语言:javascript
复制
自5.1开始对分区(Partition)有支持,一张表最多1024个分区
查询分区数据:
SELECT * from table PARTITION(p0)
 
水平分区(根据列属性按行分)
举个简单例子:一个包含十年发票记录的表可以被分区为十个不同的分区,每个分区包含的是其中一年的记录。

垂直分区(按列分)
举个简单例子:一个包含了大text和BLOB列的表,这些text和BLOB列又不经常被访问,这时候就要把这些不经常使用的text和BLOB了划分到另一个分区,在保证它们数据相关性的同时还能提高访问速度。

=== 水平分区的几种模式:===

* Range(范围) – 这种模式允许DBA将数据划分不同范围。例如DBA可以将一个表通过年份划分成三个分区,80年代(1980's)的数据,90年代(1990's)的数据以及任何在2000年(包括2000年)后的数据。 

* Hash(哈希) – 这中模式允许DBA通过对表的一个或多个列的Hash Key进行计算,最后通过这个Hash码不同数值对应的数据区域进行分区,。例如DBA可以建立一个对表主键进行分区的表。 

* Key(键值) – 上面Hash模式的一种延伸,这里的Hash Key是MySQL系统产生的。 

* List(预定义列表) – 这种模式允许系统通过DBA定义的列表的值所对应的行数据进行分割。例如:DBA建立了一个横跨三个分区的表,分别根据2004年2005年和2006年值所对应的数据。 

* Composite(复合模式) - 很神秘吧,哈哈,其实是以上模式的组合使用而已,就不解释了。举例:在初始化已经进行了Range范围分区的表上,我们可以对其中一个分区再进行hash哈希分区。 


水平分区
[分区表和未分区表试验过程]

*创建分区表,按日期的年份拆分 

mysql> CREATE TABLE part_tab ( c1 int default NULL, c2 varchar(30) default NULL, c3 date default NULL) engine=myisam 
PARTITION BY RANGE (year(c3)) (PARTITION p0 VALUES LESS THAN (1995),
PARTITION p1 VALUES LESS THAN (1996) , PARTITION p2 VALUES LESS THAN (1997) ,
PARTITION p3 VALUES LESS THAN (1998) , PARTITION p4 VALUES LESS THAN (1999) ,
PARTITION p5 VALUES LESS THAN (2000) , PARTITION p6 VALUES LESS THAN (2001) ,
PARTITION p7 VALUES LESS THAN (2002) , PARTITION p8 VALUES LESS THAN (2003) ,
PARTITION p9 VALUES LESS THAN (2004) , PARTITION p10 VALUES LESS THAN (2010),
PARTITION p11 VALUES LESS THAN MAXVALUE ); 
 
注意最后一行,考虑到可能的最大值

*查看创建的情况:
mysql> show create table part_tab;
代码语言:javascript
复制
*创建未分区表
mysql> create table no_part_tab (c1 int(11) default NULL,c2 varchar(30) default NULL,c3 date default NULL) engine=myisam;
 

*通过存储过程灌入800万条测试数据

DELIMITER //
mysql> CREATE PROCEDURE load_part_tab()
       begin
    declare v int default 0;
    while v < 8000000
    do
        insert into part_tab
        values (v,'testing partitions',adddate('1995-01-01',(rand(v)*36520) mod 3652));
         set v = v + 1;
    end while;
    end;
    //
 
Query OK, 1 row affected (8 min 17.75 sec)
 
mysql> insert into no_part_tab select * from part_tab;
Query OK, 8000000 rows affected (51.59 sec)
Records: 8000000 Duplicates: 0 Warnings: 0
* 测试SQL性能
 
mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';
 
+----------+
| count(*) |
+----------+
|   795181 |
+----------+
1 row in set (0.55 sec)
 
mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';
 
+----------+
| count(*) |
+----------+
|   795181 |
+----------+
1 row in set (4.69 sec)
结果表明分区表比未分区表的执行时间少90%。

* 通过explain语句来分析执行情况
mysql > explain select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31'\G
 
/* 结尾的\G使得mysql的输出改为列模式 */                    
*************************** 1. row ***************************
           id: 1
select_type: SIMPLE
        table: no_part_tab
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 8000000
        Extra: Using where
1 row in set (0.00 sec)
 
 
mysql> explain select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31'\G 
 
*************************** 1. row ***************************
           id: 1
select_type: SIMPLE
        table: part_tab
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 798458
        Extra: Using where
1 row in set (0.00 sec)
explain语句显示了SQL查询要处理的记录数目

* 试验创建索引后情况
mysql> create index idx_of_c3 on no_part_tab (c3);
 
Query OK, 8000000 rows affected (1 min 18.08 sec)
Records: 8000000 Duplicates: 0 Warnings: 0
mysql> create index idx_of_c3 on part_tab (c3);
 
Query OK, 8000000 rows affected (1 min 19.19 sec)
Records: 8000000 Duplicates: 0 Warnings: 0
创建索引后的数据库文件大小列表:
2008-05-24 09:23             8,608 no_part_tab.frm
2008-05-24 09:24       255,999,996 no_part_tab.MYD
2008-05-24 09:24        81,611,776 no_part_tab.MYI
2008-05-24 09:25                 0 part_tab#P#p0.MYD
2008-05-24 09:26             1,024 part_tab#P#p0.MYI
2008-05-24 09:26        25,550,656 part_tab#P#p1.MYD
2008-05-24 09:26         8,148,992 part_tab#P#p1.MYI
2008-05-24 09:26        25,620,192 part_tab#P#p10.MYD
2008-05-24 09:26         8,170,496 part_tab#P#p10.MYI
2008-05-24 09:25                 0 part_tab#P#p11.MYD
2008-05-24 09:26             1,024 part_tab#P#p11.MYI
2008-05-24 09:26        25,656,512 part_tab#P#p2.MYD
2008-05-24 09:26         8,181,760 part_tab#P#p2.MYI
2008-05-24 09:26        25,586,880 part_tab#P#p3.MYD
2008-05-24 09:26         8,160,256 part_tab#P#p3.MYI
2008-05-24 09:26        25,585,696 part_tab#P#p4.MYD
2008-05-24 09:26         8,159,232 part_tab#P#p4.MYI
2008-05-24 09:26        25,585,216 part_tab#P#p5.MYD
2008-05-24 09:26         8,159,232 part_tab#P#p5.MYI
2008-05-24 09:26        25,655,740 part_tab#P#p6.MYD
2008-05-24 09:26         8,181,760 part_tab#P#p6.MYI
2008-05-24 09:26        25,586,528 part_tab#P#p7.MYD
2008-05-24 09:26         8,160,256 part_tab#P#p7.MYI
2008-05-24 09:26        25,586,752 part_tab#P#p8.MYD
2008-05-24 09:26         8,160,256 part_tab#P#p8.MYI
2008-05-24 09:26        25,585,824 part_tab#P#p9.MYD
2008-05-24 09:26         8,159,232 part_tab#P#p9.MYI
2008-05-24 09:25             8,608 part_tab.frm
2008-05-24 09:25                68 part_tab.par
* 再次测试SQL性能
mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';
+----------+
| count(*) |
+----------+
|   795181 |
+----------+
1 row in set (2.42 sec)   /* 为原来4.69 sec 的51%*/   

重启mysql ( net stop mysql, net start mysql)后,查询时间降为0.89 sec,几乎与分区表相同。
mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31'; 
+----------+
| count(*) |
+----------+
|   795181 |
+----------+
1 row in set (0.86 sec)

* 更进一步的试验
** 增加日期范围
 
mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1997-12-31';
+----------+
| count(*) |
+----------+
| 2396524 |
+----------+
1 row in set (5.42 sec)

mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1997-12-31';
+----------+
| count(*) |
+----------+
| 2396524 |
+----------+
1 row in set (2.63 sec)

** 增加未索引字段查询
mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date
'1996-12-31' and c2='hello';
 
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (0.75 sec)
mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1996-12-31' and c2='hello';
 
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (11.52 sec)

删除老数据,分区表的速度更快:
MySQL [Mytestdb]> alter table part_tab  drop  PARTITION p1;
速度比delete删除快很多;



= 初步结论 =
* 分区和未分区占用文件空间大致相同 (数据和索引文件)
* 如果查询语句中有未建立索引字段,分区时间远远优于未分区时间
* 如果查询语句中字段建立了索引,分区和未分区的差别缩小,分区略优于未分区。

= 最终结论 =
* 对于大数据量,建议使用分区功能。
* 去除不必要的字段
* 根据手册, 增加myisam_max_sort_file_size 会增加分区性能



***************************************** 其他类型 *********************************************
[分区命令详解]

= 分区例子 = 
* RANGE 类型
CREATE TABLE users (
       uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
       name VARCHAR(30) NOT NULL DEFAULT '',
       email VARCHAR(30) NOT NULL DEFAULT ''
)
PARTITION BY RANGE (uid) (
       PARTITION p0 VALUES LESS THAN (3000000)
       DATA DIRECTORY = '/data0/data'
       INDEX DIRECTORY = '/data1/idx',

       PARTITION p1 VALUES LESS THAN (6000000)
       DATA DIRECTORY = '/data2/data'
       INDEX DIRECTORY = '/data3/idx',

       PARTITION p2 VALUES LESS THAN (9000000)
       DATA DIRECTORY = '/data4/data'
       INDEX DIRECTORY = '/data5/idx',

       PARTITION p3 VALUES LESS THAN MAXVALUE     DATA DIRECTORY = '/data6/data' 
       INDEX DIRECTORY = '/data7/idx'
);
 
在这里,将用户表分成4个分区,以每300万条记录为界限,每个分区都有自己独立的数据、索引文件的存放目录,与此同时,这些目录所在的物理磁盘分区可能也都是完全独立的,可以提高磁盘IO吞吐量。
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019-01-11 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档