Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >飞桨文字识别模型套件PaddleOCR首次开源,带来8.6M超轻量中英文OCR模型!

飞桨文字识别模型套件PaddleOCR首次开源,带来8.6M超轻量中英文OCR模型!

作者头像
用户1386409
发布于 2020-06-04 08:52:26
发布于 2020-06-04 08:52:26
3.2K02
代码可运行
举报
文章被收录于专栏:PaddlePaddlePaddlePaddle
运行总次数:2
代码可运行

OCR技术有着丰富的应用场景,包括已经在日常生活中广泛应用的面向垂类的结构化文本识别,如车牌识别、银行卡信息识别、身份证信息识别、火车票信息识别等等,此外,通用OCR技术也有广泛的应用,如在视频场景中,经常使用OCR技术进行字幕自动翻译、内容安全监控等等,或者与视觉特征相结合,完成视频理解、视频搜索等任务。

OCR文字检测和识别目前的主流方法大多是采用深度学习技术,这从ICDAR2015自然场景排名前列的应用方法可以明显看出。深度学习技术在一些垂类场景,文本识别精准度已经可以达到99%以上,取得了非常好的效果。

但在实际应用中,尤其是在广泛的通用场景下,OCR技术也面临一些挑战,比如仿射变换、尺度问题、光照不足、拍摄模糊等技术难点;另外OCR应用常对接海量数据,但要求数据能够得到实时处理;并且OCR应用常部署在移动端或嵌入式硬件,而端侧的存储空间和计算能力有限,因此对OCR模型的大小和预测速度有很高的要求。

在这样的背景下,飞桨首次开源文字识别模型套件PaddleOCR,目标是打造丰富、领先、实用的文本识别模型/工具库。首阶段的开源套件推出了重磅模型:8.6M超轻量中英文识别模型。用户既可以很便捷的直接使用该超轻量模型,也可以使用开源套件训练自己的超轻量模型。

项目地址:

https://github.com/PaddlePaddle/PaddleOCR

8.6M超轻量

中英文OCR模型开源

模型画像:

  • 总模型大小仅8.6M
  • 仅1个检测模型(4.1M)+1个识别模型(4.5M)组成
  • 同时支持中英文识别
  • 支持倾斜、竖排等多种方向文字识别
  • T4单次预测全程平均耗时仅60ms
  • 支持GPU、CPU预测
  • 可运行于LinuxWindowsMacOS等多种系统

PaddleOCR发布的超轻量模型由1个文本检测模型(4.1M)和1个文本识别模型(4.5M)组成,共8.6M。其中,文本检测模型使用的2020年发表于AAAI上的DB[1]算法,文本识别模型使用经典的CRNN[4]算法。鉴于MobileNetV3在端侧系列模型中的优越表现,两个模型均选择使用MobileNetV3作为骨干网络,可将模型大小初步减少90%以上。此外,通过减小通道数等操作,将模型大小进一步减小。超轻量模型组成详情如下图:

超轻量模型在推理速度上也有出色的表现,下面给出了PaddleOCR在T4和V100两种机型上的推理耗时评估,评估数据使用从中文公开数据集ICDAR2017-RCTW(https://rctw.vlrlab.net/dataset/)中随机抽取的500张图像,评估耗时阶段为图像输入到结果输出的完整阶段,评估详情如下:

可以看到,长边960像素时,T4平均耗时仅72ms,V100平均耗时更是低至29ms。减小长边尺寸,还可进一步加速。

PaddleOCR超轻量模型同时支持中英文识别,并且支持倾斜、竖排等多种方向的文字识别,我们看看效果示例。示例图中给出了每个文本检测框的识别结果(text)和相应的置信度(score)。

<< 滑动查看下一张图片 >>

可以看到,模型在中英文、数字、多角度文本上都能有很好的识别效果。

快速体验超轻量

中英文OCR模型

PaddleOCR已将该超轻量模型开源,感兴趣的小伙伴赶紧动手操练一下吧:

1. 准备PaddleOCR环境

参考github项目教程中的快速安装指导,准备好环境

2. 下载超轻量OCR模型

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
mkdir inference && cd inference
# 下载超轻量级中文OCR模型的检测模型并解压
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
# 下载超轻量级中文OCR模型的识别模型并解压
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
cd ..

3. 预测单张图片或图像集

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 设置PYTHONPATH环境变量
export PYTHONPATH=.
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/"

更便捷的在线体验方案

该模型也已经内置在飞桨预训练模型应用工具PaddleHub中,供用户更便捷地体验,上传图片即可在线体验:

https://www.paddlepaddle.org.cn/hub/scene/ocr

准备环境:

需提前安装PaddlePaddle=1.7.2,然后更新PaddleHub到最新版本

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
pip install paddlehub --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple

1. 加载预训练模型

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import paddlehub as hub
ocr = hub.Module(name="chinese_ocr_db_crnn") #加载预训练模型

2. 预测单张图片

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
results = ocr.recognize_text(paths=['/PATH/TO/IMAGE'], visualization=True)  #输入自定义待识别图片路径、并保存可视化图片结果

效果更好的大模型同步开源

除了上述超轻量模型,PaddleOCR同时开源了相应大模型——通用中文OCR模型,可以达到更好的识别效果,给用户提供多种选择。大模型的基础算法与超轻量模型一致:检测模型基于DB算法,识别模型基于CRNN算法,不同的是,检测模型骨干网络换成resnet50_vd[8],识别模型骨干网络换成resnet34_vd[8],模型效果示例:

<< 滑动查看下一张图片 >>

可以看到,大模型能够检测到更完整的文本行,并且识别更准确,如果对模型大小要求不高,但希望能有更好效果,可以选择使用大模型。大模型的体验步骤与超轻量模型一致,下载相应模型、替换预测命令中的模型路径即可体验:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 通用中文OCR模型的检测模型
https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar
# 通用中文OCR模型的识别模型
https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar

训练自己的超轻量模型

我们知道,训练与测试数据的一致性直接影响模型效果,为了更好的模型效果,经常需要使用自己的数据训练超轻量模型。PaddleOCR本次开源内容除了8.6M超轻量模型,同时提供了2种文本检测算法、4种文本识别算法,并发布了相应的4种文本检测模型、8种文本识别模型,用户可以在此基础上打造自己的超轻量模型。

PaddleOCR本次开源了多种业界知名的文本检测和识别算法,每种算法的效果都达到或超越了原作。文本检测算法部分,实现了EAST[1]和DB[2]。在ICDAR2015文本检测公开数据集上,算法效果如下:

文本识别算法部分,借鉴DTRB[3]文字识别训练和评估流程,实现了CRNN[4]、Rosseta[5]、STAR-Net[6]、RARE[7]四种文本识别算法,覆盖了主流的基于CTC和基于Attention的两类文本识别算法。使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:

想要使用自定义数据训练超轻量模型的小伙伴,可以参考8.6M超轻量模型的打造方式,从PaddleOCR提供的基础算法库中选择适合自己的文本检测、识别算法,进行自定义的训练。PaddleOCR提供了详细的训练和模型串联指导:

https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/customize.md

更多PaddleOCR的应用方法,欢迎访问项目地址:

GitHub:

https://github.com/PaddlePaddle/PaddleOCR

Gitee:

https://gitee.com/PaddlePaddle/PaddleOCR

参考文献

[1] Zhou X, Yao C, Wen H, et al. EAST: an efficient and accurate scene text detector[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2017: 5551-5560.

[2] Liao M, Wan Z, Yao C, et al. Real-time Scene Text Detection with Differentiable Binarization[J]. arXiv preprint arXiv:1911.08947, 2019.

[3] Baek J, Kim G, Lee J, et al. What is wrong with scene text recognition model comparisons? dataset and model analysis[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 4715-4723.

[4] B. Shi, X. Bai, C. Yao. An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition. IEEE Trans. on PAMI , 39(11): 2298-2304, 2017.

[5] Borisyuk F, Gordo A, Sivakumar V. Rosetta: Large scale system for text detection and recognition in images[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 71-79.

[6] Liu W, Chen C, Wong K Y K, et al. STAR-Net: A SpaTial Attention Residue Network for Scene Text Recognition[C]//BMVC. 2016, 2: 7.

[7] Shi B, Wang X, Lyu P, et al. Robust scene text recognition with automatic rectification[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 4168-4176.

[8] https://paddleclas.readthedocs.io/zh_CN/latest/models/ResNet_and_vd.html

END

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-06-02,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 PaddlePaddle 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
Cytoscape中文教程(1)
写在前面,这个教程真的有点长,是我早期翻译的,如果你完全不懂Cytoscape,那么你读这些,应该会做出非常漂亮的各种基于cytoscape及插件的图,因为这个教程真的很白。 原文地址
Y大宽
2018/09/10
11.2K0
Cytoscape中文教程(1)
Cytoscape中文教程(3)
典型的是,这些基因是对你的实验调节反应比较强烈的基因(也就是差异基因)。下面讲描述三种和这些基因相关的输入网络数据到cytoscape的方法: A:querying相互作用数据库 B:通过文本挖掘计数建立关系网络 C:加载自己的网络数据(从text tile) 究竟选取哪一种方式基于那种是最适合你的案例的。想跟从下面步骤的话下载galFiltered.sif文件,继续步骤。这个文件中,最有效的网络的建立至少有250个interacitons。为了获取这样的一个网络,至少得有25个gene,也可以增加更多的基因和更多的关系获取最理想的size。
Y大宽
2019/02/25
4.1K0
Cytoscape中文教程(3)
Cytoscape教程(一)
What is cytoscape Cytoscape is an open source software platform for visualizing molecular interaction networks and biological pathways and integrating these networks with annotations, gene expression profiles and other state data. Although Cytoscape was o
生信宝典
2018/02/05
1.7K0
Cytoscape教程(一)
cBioportal中文教程
大规模的癌症基因组计划,比如The cancer genome atlas(TCGA) and the International cancer genome consortium(ICGC),正在从多技术平台产生更多的癌症基因组数据。这使得这些数据的整合,探索和分析越来越具有挑战性,尤其是对于没有计算机背景知识的科学家来说。cBioPortal是专门设计来降低对这些复杂数据的接近门槛,因此,促进基因组数据向新的生物学视野,治疗和临床特征的转变。
Y大宽
2018/09/10
5K0
cBioportal中文教程
cytoscape中文手册推荐(配视频)
我们之前也有过一个专辑:《cytoscape十大插件》,详见:cytoscape十大插件之九 - 转录调控王者 iRegulon,而且在b站有配套视频操作演示,可以任意快进快退的学习它。
生信技能树
2023/09/04
1K0
cytoscape中文手册推荐(配视频)
Cytoscape插件5:DisGeNET(1)
为了产生不同类型的网络,DisGeNET的控制面板提供了可以调整的参数。包含三个标签:gene disease network, disease projects, gene projections.默认的是gene disease network,这种模式下,不同的GDA(gene disease assosiations)网络可以通过选择不同的data来产生。Assosiation类型和/或disease classes由下拉菜单产生。GDA网络可以通过cut-off过滤。另外,GDA网络可以围绕一个特殊的疾病或基因建立,需要通过search boxes。其中一些功能也可以用来产生疾病project和gene project网络。
Y大宽
2018/09/10
2.4K0
Cytoscape插件5:DisGeNET(1)
ToppGene Suite中文使用指南
2007.12:Improved human disease candidate gene prioritization using mouse phenotype 2008.2:Disease candidate gene identification and prioritization using protein interaction networks 2009.9:ToppGene Suite for gene list enrichment analysis and candidate gene prioritization 2010.2:ToppCluster: a multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems
Y大宽
2018/09/10
3.6K0
ToppGene Suite中文使用指南
Cytoscape插件6:CluoGO+Cluepedia
大多数的富集工具都是以列表和复杂等级树显示。Cluoego可视化归纳相似的过程或通路。主要是GO和KEGG ,并且作者可以设置自己的阈值动态改变网络。 Cluego有两个主要的特征:1.根据基因列表,可以用于terms的可视化,2,两个clusters的功能解释的比较。
Y大宽
2018/09/10
4.2K0
Cytoscape插件6:CluoGO+Cluepedia
Cytoscape插件5:DisGeNET(2)应用实例
广泛的定义为“对于一个给定的基因集来说,哪些基因和某疾病相关?” 哮喘病是一个严重的慢性疾病,有时会威胁生命,这种病肺部发生病变。哮喘的病因很复杂包括遗传和环境因素。对化学物的过敏对哮喘关系很大,但机制不明。因此,对毒理学家来说,因为化学物质引起的哮喘的关键生理过程对毒理学家很重要。
Y大宽
2018/09/10
2.6K0
Cytoscape插件5:DisGeNET(2)应用实例
cytoscape的cytohubba及MCODE插件寻找子网络hub基因
不过,好在我有一千多学员,一百多个学徒,给他们安排的作业就是写这些简单软件操作指南,这样就弥补了我写不来太基础教程的弱点。
生信技能树
2020/02/20
24.4K1
R语言可视化STRING分析的蛋白互作网络(PPI)
STRING 链接 https://string-db.org/ 数据集我使用R语言包clusterProfiler中经常用作示例的基因列表 获取gene symbol的代码
用户7010445
2020/03/05
5K3
R语言可视化STRING分析的蛋白互作网络(PPI)
Cytoscape插件4:iRegulon
对所有生物过程来说,基因表达的精确调控对基因表达是非常重要的。序列特异性的转录因子结合在DNA 识别区域(cis调控元件),并且因此控制目标基因的转录起始速率,通过与其他比如co-factors的相互作用,染色体修饰和转录工厂等。人基因组编码大概1800个序列特异性转录因子,其中每一个都调控几百个目标基因。因为,TF 在基因表达中扮演重要角色,他们经常被认为是细胞过程的真正调控者。因此,这些TF的靶基因(target genes)的mapping和characterization对TF调控的生理过程可以提供
Y大宽
2018/09/10
3.3K0
Cytoscape插件4:iRegulon
Cytoscape插件3:Enrichment Map(1)
早期的基因列表解释依赖于选择一系列高得分的基因,然后建立相当主观奇怪的关系。富集分析是一个自动的,基于严格的统计学的方法来分析和解释很大的基因列表,使用的是先验知识。富集分析来评估输入的基因列表在一个已知功能基因集的上调或下调情况。如果一个基因列表中的基因在这个已知功能集中出现的基因数目显著很多,这很可能预示这,这个生物学过程在作者研究的状况下扮演着重要角色。这个分析可以被其他已知的功能基因集重复,这个功能基因集可能数以千计。 过去几年中,有超过60种富集分析方法和工具出现。他们的主要区别在于 -(a)已知功能基因集的数据库不一样 -(b)用来评估富集的统计学方法不一样。 在接下来的几个部分,我们简要review 基因富集已经存在的几种方法,主要考虑到两个方法。 大多数的富集工具都是来自于GO解释,因为它们对大多数生物来说容易获取,并且覆盖的基因数很多,另外,还有其他一些功能基因集存在,除了GO也还有其他一些工具。功能基因集可以基于他们参与的代谢过程或信号通路来进行定义(比如KEGG,Reactome),也可以由基因表达谱调节的目标基因定义(比如mircoRNA,转录因子),也可以由蛋白质特征定义(比如结构域,染色体位置,与某种疾病的联系,刺激因子,或基因扰动等)。多个来源的功能基因集被一些像MSigDB或WhichGenes收集。不是所有的生物被功能基因集覆盖了,并且很多工具值支持特定的生物。 决定富集的统计学方法要么是基于阈值要么是基于全分布。基于阈值的方法需要用户输入排名靠前的不连续的基因列表,这需要设定一个基于统计学的基因得分阈值。基于超几何分布的Fisher‘s精确单尾检验是阐释这个问题的第一个方法,并且会继续成为这种类型最常使用的方法。这些方法对自然非连续分布列表很有用,但是当对连续的基因得分评判时就有缺点了。尤其,结果如果对阈值的选择不稳定,并且,以二进位的方式对待基因得分有很多信息确实(这里说的二进位指的是要么选中,要么不被选中)。另一方面,基于基因全分布的方法没有门槛threshold-free,因为他们检测基因集靠的是比较他们的得分分布vs背景分布。因为这个原因,他们经常被认为是优于threshold-dependent方法,尤其和一个连续的基因集得分。GSEA(Gene-Set Enrichment Analysis),它的基因排序rank源于差异表达或其他统计学,是最流行的技术之一,虽然也有其他的全分布检验模型被提出。
Y大宽
2018/09/10
3.3K0
Cytoscape插件3:Enrichment Map(1)
STRING网站:蛋白互作分析的高效利器
小洁老师课上用到的是STRING数据库,所以这期我们一起来看一下如何使用STRING网站,得到蛋白互作分析结果
生信菜鸟团
2025/06/13
1440
STRING网站:蛋白互作分析的高效利器
Network在单细胞转录组数据分析中的应用
面向单细胞的技术革命,让我们得以进入新的研究层面,但也对传统的分析方法提出了一系列的挑战。单细胞技术正在弥补分子生物学和组织生物学之间的鸿沟,进入高通量时代以来,这项技术所揭示的不是单一元素的信息,而是在单细胞层面揭示某种系统关系:DNA,RNA,ATAC等。我们知道,在系统中,关键要素除了来自元素本身(基因,转录本等生物小分子)之外,还来自元素之间的关系。虽然作为领域起源的社会网络分析可以追溯到20世纪30年代,图论可以上溯几个世纪,但网络科学的迅速崛起与普及只是近几十年的事情。目前,基因调控网络,生物代谢与信号转导网络,蛋白质互作网络作为基本的生物分子网络(Biological molecular network )已经在生物信息分析中得到广泛的应用。
生信技能树jimmy
2020/09/28
2.5K0
Network在单细胞转录组数据分析中的应用
这个只需一步就可做富集分析的网站还未发表就被CNS等引用超过350次
Metascape(http://metascape.org/) 是一个功能强大的基因功能注释分析工具,能帮助用户将当前流行的生物信息学分析方法应用到批量基因和蛋白质的分析中,以实现对基因或蛋白功能的认知。只需在Metascape网页几步简单的操作,就可以对大批量的基因或蛋白质进行注释、富集分析以及构建蛋白质-蛋白质互作网络。并且构建的蛋白互作网络还可以直接导出给Cytoscape使用,绘制美观、可发表的蛋白互作网络图。
生信宝典
2019/10/14
2K0
这个只需一步就可做富集分析的网站还未发表就被CNS等引用超过350次
Cytoscape插件1:Centiscape
Cytoscape的插件或多或少都有一些弊端,Centiscape是目前(文章时间2009)唯一一个可以一次计算多个中心值的插件(相对于network analysis等).它可以根据拓扑和生物学属性寻找最显著差异的基因。它只适合于无向网络,可以计算的参数有(average distance,diameter直径,degree度数,stress压力,betweenness中介性,radiality放射性,closeness紧密度(接近中心性),centroid value质心值,eccentricity离心值。插件的帮助文件有以上的定义,描述,生物学意义和计算的复杂性。每个参数的max,min,mean值都有提供。还可以可视化。右边的滑动块可以调整作者的值(默认是mean)。如果必要的话,可以把其中几个参数给deactive掉,也就是不勾选acitive复选框。用户可以选择其中几个参数more/equal而另外的选择less/equal,也可以假如AND-OR 参数。这些可以马上知道结果例如“哪些节点有高中介性值和高stress同时低离心值?”要注意的是,threshold也可以手动设置。一旦根据用户的选定设置,相应的子图就可以提取显示。两类图的输出可以被支持,根据centrality 画图,根据node画图,以上两种都支持其他工具所不支持的分析。 The plot by node 可以提供任何一个node 的所有计算的centiscape值,并以bar 图展示。Mean,max,min以不同颜色显示。图中的所有值都是标准化的,当用鼠标指向某一个时候显示的是真实值。 The plot by centrality 根据中心性画图。可以有五种方式画图 1 centrality vs centrality 2.centrality vs experimental data 3.experimental data vs experimental data 4.centrality vs itself 5.experimental vs itself 仔细看怎么用(plot by centrality可以发掘根据特殊的拓扑或实验特性聚成一类的群。并可以提取子网络进一步分析。拓扑特性和实验数据的结合可以用来对子网络的功能进行更多的有意义的预测或实验证实。 文章作者然后用一个例子来具体说明 整个网络的拓扑性质的总体会首先看到诸如min,max,mean等。例如,degree的平均值是13.5,平均距离是3显示这是一个高度连接的网络,也就是其中蛋白发生了强烈的相互作用。为了找到最高分蛋白的找出,我们可以应用“plot by centrality”。 画degree over degree,显示,分布是不均匀的,大多数nodes有低degree,很少的有高degree的。这和已知的生物网络的无尺度架构一致。下面这个是我的ucco的值,结果差不多,低degree的多余高degree的。
Y大宽
2019/02/25
2.6K0
Cytoscape插件1:Centiscape
Cytoscape插件3:Enrichment Map(2)
所有的微阵列表达数据下载与GEO数据库。Raw.CEL文件用bioconductor的affy包进行RMA。数据集的选择依据以下几个质量控制标准:可靠的并且高覆盖率的微阵列平台(Affymetrix HGU-133 plus 2.0),清晰的实验设计,重复足够数目(细胞系>=3,病人样本>=5),统一的cell composition,PCA结果和实验设计已知(比如样品可以从不同类进行清晰分类)。在从Affymetrix 向NCBI entrez-gene转换后,执行富集分析,使用的是bioconductor hgu133plus2 package。
Y大宽
2018/09/10
1.6K0
Cytoscape插件3:Enrichment Map(2)
Cytoscape制作带bar图和pie图节点的网络图
本教程旨在告诉大家如何使用cytoscape根据Node信息表格制作带有barplot信息节点的网络图。以安装文件夹下的样例数据为例。
生信宝典
2018/10/25
3.2K0
Cytoscape制作带bar图和pie图节点的网络图
STRING网站+Cytoscape软件制作精美蛋白互作网络图(PPI)
之前小编为大家推送了利用DAVID网站进行差异基因的GO和KEGG分析,而基因功能注释后就可以寻找蛋白表达之间的关系了,在生信分析中,常常会使用STRING网站+Cytoscape软件来制作蛋白互作网络图(PPI)。今天小编奉上一部PPI制作教程,让我们一起细细咀嚼吧!
百味科研芝士
2019/05/29
50.7K2
相关推荐
Cytoscape中文教程(1)
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验