先看基于模板的
1.
3x3
1/9 | 1/9 | 1/9 |
|---|---|---|
1/9 | 1/9 | 1/9 |
1/9 | 1/9 | 1/9 |
这个模板很明显,就是把当前像素的值用周围的像素值的平均值代替,产生模糊效果

// 模糊处理

void ImageProcess::BlurImage(CImage* srcImage,CImage* outImage, int blurType)


...{

CWaitCursor WaitCursor;

//设置进度条范围

((CMainFrame*)AfxGetMainWnd())->SetProgressRange(0,srcImage->GetWidth());


for(int x = 0;x < srcImage->GetWidth();x++)


...{

//设置当前进度

((CMainFrame*)AfxGetMainWnd())->SetProgressPos(x);


for(int y = 0;y < srcImage->GetHeight();y++)


...{

int r = 0,g = 0,b = 0;

for(int col = -blurType;col <= blurType;col++)


...{

for(int row = -blurType;row <= blurType;row++)


...{

COLORREF pixel;

//防止越界

if( (x+row) < 0 ||(x+row) >= srcImage->GetWidth() ||

(y+col) < 0 || (y+col) >= srcImage->GetHeight())

pixel = srcImage->GetPixel(x,y);

else

pixel = srcImage->GetPixel(x + row,y + col);

r += GetRValue(pixel);

g += GetGValue(pixel);

b += GetBValue(pixel);

}

}

//取平均值

int blocks = (blurType*2 + 1)*(blurType*2 + 1);

r /= blocks;

g /= blocks;

b /= blocks;

//写回图像

outImage->SetPixelRGB(x,y,r,g,b);

}

}

}

同样,也有5x5,7x5等等的模板,模板越大,处理后的图像就越模糊
2.
0 | -1 | 0 |
|---|---|---|
-1 | 4 | -1 |
0 | -1 | 0 |
这是另一种模板,是为了增强当前像素与周围像素的差别,产生的效果就是:锐化 此时的模板叫Laplacian模板,当然,这不是唯一的一种形式,例如:
-1 -2 -1
0 0 0
1 2 1
-1 0 1
-2 0 2
-1 0 1
是两种简化运算的近似效果,可以取得更快的处理速度

// 锐化图像

void ImageProcess::SharpImage(CImage* srcImage,CImage* outImage, int sharpType)


...{

int Laplacian[3][9] =


...{


...{0,-1,0,-1,4,-1,0,-1,0},


...{-1,-2,-1,0,0,0,1,2,1},


...{-1,0,1,-2,0,2,-1,0,1}

};

CWaitCursor WaitCursor;

//设置进度条范围

((CMainFrame*)AfxGetMainWnd())->SetProgressRange(0,srcImage->GetWidth());


for(int x = 0;x < srcImage->GetWidth();x++)


...{

//设置当前进度

((CMainFrame*)AfxGetMainWnd())->SetProgressPos(x);


for(int y = 0;y < srcImage->GetHeight();y++)


...{

int r = 0,g = 0,b = 0,index = 0;;

for(int col = -1;col <= 1;col++)


...{

for(int row = -1;row <= 1;row++)


...{

COLORREF pixel;

//防止越界

if( (x+row) < 0 ||(x+row) >= srcImage->GetWidth() ||

(y+col) < 0 || (y+col) >= srcImage->GetHeight())

pixel = srcImage->GetPixel(x,y);

else

pixel = srcImage->GetPixel(x + row,y + col);

r += GetRValue(pixel) * Laplacian[sharpType][index];

g += GetGValue(pixel) * Laplacian[sharpType][index];

b += GetBValue(pixel) * Laplacian[sharpType][index];

index++;

}

}


//增强

COLORREF pixel = srcImage->GetPixel(x,y);

//r += GetRValue(pixel);

//g += GetGValue(pixel);

//b += GetBValue(pixel);


//处理颜色值溢出

r = (r > 255) ? 255 : r;

r = (r < 0) ? 0 : r;

g = (g > 255) ? 255 : g;

g = (g < 0) ? 0 : g;

b = (b > 255) ? 255 : b;

b = (b < 0) ? 0 : b;


//写回图像

outImage->SetPixelRGB(x,y,r,g,b);

}

}

}
3.基本的灰度变换 这应该是最简单的变换了,s=f(x,y),s为处理后的像素颜色值,而f(x,y)是什么函数,就决定了处理效果 如: 图像反转:s=L-1-r,常用于医学上的透视图的处理 对数变换:s=cLog(1+r),可以扩展被压缩的高值图像中的暗像素 幂次变换:s=cr^γ,这就是传说中的伽马校正! 代码示例,仅有对数变换,其它同理

// 对数变换

void ImageProcess::LogTransform(CImage* srcImage, CImage* outImage, int c)


...{

CWaitCursor WaitCursor;

//设置进度条范围

((CMainFrame*)AfxGetMainWnd())->SetProgressRange(0,srcImage->GetWidth());


for(int x = 0;x < srcImage->GetWidth();x++)


...{

//设置当前进度

((CMainFrame*)AfxGetMainWnd())->SetProgressPos(x);


for(int y = 0;y < srcImage->GetHeight();y++)


...{

int r = 0,g = 0,b = 0;

COLORREF pixel = srcImage->GetPixel(x,y);

r = GetRValue(pixel);

g = GetGValue(pixel);

b = GetBValue(pixel);

r = (int)(c * log(1.0f + r));

g = (int)(c * log(1.0f + g));

b = (int)(c * log(1.0f + b));


//处理颜色值溢出

r = (r > 255) ? 255 : r;

r = (r < 0) ? 0 : r;

g = (g > 255) ? 255 : g;

g = (g < 0) ? 0 : g;

b = (b > 255) ? 255 : b;

b = (b < 0) ? 0 : b;


//写回图像

outImage->SetPixelRGB(x,y,r,g,b);

}

}

}
