bool可以连接组和一下几个参数条件:
每一个子查询都独自地计算文档的相关性得分。一旦他们的得分被计算出来, bool 查询就将这些得分进行合并并且返回一个代表整个布尔操作的得分。
由于这是我们看到的第一个包含多个查询的查询,所以有必要讨论一下相关性得分是如何组合的。每一个子查询都独自地计算文档的相关性得分。一旦他们的得分被计算出来, bool 查询就将这些得分进行合并并且返回一个代表整个布尔操作的得分。
下面的查询用于查找 title 字段匹配 how to make millions 并且不被标识为 spam 的文档。那些被标识为 starred 或在2014之后的文档,将比另外那些文档拥有更高的排名。如果 两者 都满足,那么它排名将更高:
{
"bool": {
"must": { "match": { "title": "how to make millions" }},
"must_not": { "match": { "tag": "spam" }},
"should": [
{ "match": { "tag": "starred" }},
{ "range": { "date": { "gte": "2014-01-01" }}}
]
}
}
在上面的查询中,如果我们不想因为date这个字段来影响得分,我们可以用filter语句来重写:
{
"bool": {
"must": { "match": { "title": "how to make millions" }},
"must_not": { "match": { "tag": "spam" }},
"should": [
{ "match": { "tag": "starred" }}
],
"filter": {
"range": { "date": { "gte": "2014-01-01" }}
}
}
}
我们把date的条件转移到了filter中,这样,这个date就不会影响评分和相关性排名了,这样可以优化查询性能。
所有查询都可以借鉴这种方式。将查询移到 bool 查询的 filter 语句中,这样它就自动的转成一个不评分的 filter 了。
如果你需要通过多个不同的标准来过滤你的文档,bool 查询本身也可以被用做不评分的查询。简单地将它放置到 filter 语句中并在内部构建布尔逻辑:
{
"bool": {
"must": { "match": { "title": "how to make millions" }},
"must_not": { "match": { "tag": "spam" }},
"should": [
{ "match": { "tag": "starred" }}
],
"filter": {
"bool": {
"must": [
{ "range": { "date": { "gte": "2014-01-01" }}},
{ "range": { "price": { "lte": 29.99 }}}
],
"must_not": [
{ "term": { "category": "ebooks" }}
]
}
}
}
}
constant_score 查询,它是将一个不变的常量评分应用于所有匹配的文档,经常用于:只执行一个filter而没有其他查询。
可以使用它来取代只有 filter 语句的 bool 查询。在性能上是完全相同的,但对于提高查询简洁性和清晰度有很大帮助。
{
"constant_score": {
"filter": {
"term": { "category": "ebooks" }
}
}
}
term 查询被放置在 constant_score 中,转成不评分的 filter。这种方式可以用来取代只有 filter 语句的 bool 查询。