本文主要介绍 Elasticsearch 23种最有用的检索技巧,提供了详尽的源码举例,并配有相应的Java API实现,是不可多得的 Elasticsearch 学习&实战资料
为了讲解不同类型 ES 检索,我们将要对包含以下类型的文档集合进行检索:
title 标题
authors 作者
summary 摘要
release data 发布日期
number of reviews 评论数
首先,我们借助 bulk API 批量创建新的索引并提交数据
# 设置索引 settings
PUT /bookdb_index
{ "settings": { "number_of_shards": 1 }}
# bulk 提交数据
POST /bookdb_index/book/_bulk
{"index":{"_id":1}}
{"title":"Elasticsearch: The Definitive Guide","authors":["clinton gormley","zachary tong"],"summary":"A distibuted real-time search and analytics engine","publish_date":"2015-02-07","num_reviews":20,"publisher":"oreilly"}
{"index":{"_id":2}}
{"title":"Taming Text: How to Find, Organize, and Manipulate It","authors":["grant ingersoll","thomas morton","drew farris"],"summary":"organize text using approaches such as full-text search, proper name recognition, clustering, tagging, information extraction, and summarization","publish_date":"2013-01-24","num_reviews":12,"publisher":"manning"}
{"index":{"_id":3}}
{"title":"Elasticsearch in Action","authors":["radu gheorge","matthew lee hinman","roy russo"],"summary":"build scalable search applications using Elasticsearch without having to do complex low-level programming or understand advanced data science algorithms","publish_date":"2015-12-03","num_reviews":18,"publisher":"manning"}
{"index":{"_id":4}}
{"title":"Solr in Action","authors":["trey grainger","timothy potter"],"summary":"Comprehensive guide to implementing a scalable search engine using Apache Solr","publish_date":"2014-04-05","num_reviews":23,"publisher":"manning"}
注意:本文实验使用的ES版本是 ES 6.3.0
有两种方式可以执行全文检索:
1)使用包含参数的检索API,参数作为URL的一部分
举例:以下对 "guide" 执行全文检索
GET bookdb_index/book/_search?q=guide
[Results]
"hits": {
"total": 2,
"max_score": 1.3278645,
"hits": [
{
"_index": "bookdb_index",
"_type": "book",
"_id": "4",
"_score": 1.3278645,
"_source": {
"title": "Solr in Action",
"authors": [
"trey grainger",
"timothy potter"
],
"summary": "Comprehensive guide to implementing a scalable search engine using Apache Solr",
"publish_date": "2014-04-05",
"num_reviews": 23,
"publisher": "manning"
}
},
{
"_index": "bookdb_index",
"_type": "book",
"_id": "1",
"_score": 1.2871116,
"_source": {
"title": "Elasticsearch: The Definitive Guide",
"authors": [
"clinton gormley",
"zachary tong"
],
"summary": "A distibuted real-time search and analytics engine",
"publish_date": "2015-02-07",
"num_reviews": 20,
"publisher": "oreilly"
}
}
]
}
2)使用完整的ES DSL,其中Json body作为请求体 其执行结果如方式 1)结果一致.
GET bookdb_index/book/_search
{
"query": {
"multi_match": {
"query": "guide",
"fields" : ["_all"]
}
}
}
解读: 使用multi_match关键字代替match关键字,作为对多个字段运行相同查询的方便的简写方式。 fields属性指定要查询的字段,在这种情况下,我们要对文档中的所有字段进行查询
注意:ES 6.x 默认不启用
_all
字段, 不指定 fields 默认搜索为所有字段
这两个API也允许您指定要搜索的字段。 例如,要在标题字段(title)中搜索带有 "in action" 字样的图书
1)URL检索方式
GET bookdb_index/book/_search?q=title:in action
[Results]
"hits": {
"total": 2,
"max_score": 1.6323128,
"hits": [
{
"_index": "bookdb_index",
"_type": "book",
"_id": "3",
"_score": 1.6323128,
"_source": {
"title": "Elasticsearch in Action",
"authors": [
"radu gheorge",
"matthew lee hinman",
"roy russo"
],
"summary": "build scalable search applications using Elasticsearch without having to do complex low-level programming or understand advanced data science algorithms",
"publish_date": "2015-12-03",
"num_reviews": 18,
"publisher": "manning"
}
},
{
"_index": "bookdb_index",
"_type": "book",
"_id": "4",
"_score": 1.6323128,
"_source": {
"title": "Solr in Action",
"authors": [
"trey grainger",
"timothy potter"
],
"summary": "Comprehensive guide to implementing a scalable search engine using Apache Solr",
"publish_date": "2014-04-05",
"num_reviews": 23,
"publisher": "manning"
}
}
]
}
2)DSL检索方式 然而,full body的DSL为您提供了创建更复杂查询的更多灵活性(我们将在后面看到)以及指定您希望的返回结果。在下面的示例中,我们指定要返回的结果数、偏移量(对分页有用)、我们要返回的文档字段以及属性的高亮显示。
结果数的表示方式:size 偏移值的表示方式:from 指定返回字段 的表示方式 :_source 高亮显示 的表示方式 :highliaght
GET bookdb_index/book/_search
{
"query": {
"match": {
"title": "in action"
}
},
"size": 2,
"from": 0,
"_source": ["title", "summary", "publish_date"],
"highlight": {
"fields": {
"title": {}
}
}
}
[Results]
"hits": {
"total": 2,
"max_score": 1.6323128,
"hits": [
{
"_index": "bookdb_index",
"_type": "book",
"_id": "3",
"_score": 1.6323128,
"_source": {
"summary": "build scalable search applications using Elasticsearch without having to do complex low-level programming or understand advanced data science algorithms",
"title": "Elasticsearch in Action",
"publish_date": "2015-12-03"
},
"highlight": {
"title": [
"Elasticsearch <em>in</em> <em>Action</em>"
]
}
},
{
"_index": "bookdb_index",
"_type": "book",
"_id": "4",
"_score": 1.6323128,
"_source": {
"summary": "Comprehensive guide to implementing a scalable search engine using Apache Solr",
"title": "Solr in Action",
"publish_date": "2014-04-05"
},
"highlight": {
"title": [
"Solr <em>in</em> <em>Action</em>"
]
}
}
]
}
注意:
如我们已经看到的,要在搜索中查询多个文档字段(例如在标题和摘要中搜索相同的查询字符串),请使用multi_match查询
GET bookdb_index/book/_search
{
"query": {
"multi_match": {
"query": "guide",
"fields": ["title", "summary"]
}
}
}
[Results]
"hits": {
"total": 3,
"max_score": 2.0281231,
"hits": [
{
"_index": "bookdb_index",
"_type": "book",
"_id": "1",
"_score": 2.0281231,
"_source": {
"title": "Elasticsearch: The Definitive Guide",
"authors": [
"clinton gormley",
"zachary tong"
],
"summary": "A distibuted real-time search and analytics engine",
"publish_date": "2015-02-07",
"num_reviews": 20,
"publisher": "oreilly"
}
},
{
"_index": "bookdb_index",
"_type": "book",
"_id": "4",
"_score": 1.3278645,
"_source": {
"title": "Solr in Action",
"authors": [
"trey grainger",
"timothy potter"
],
"summary": "Comprehensive guide to implementing a scalable search engine using Apache Solr",
"publish_date": "2014-04-05",
"num_reviews": 23,
"publisher": "manning"
}
},
{
"_index": "bookdb_index",
"_type": "book",
"_id": "3",
"_score": 1.0333893,
"_source": {
"title": "Elasticsearch in Action",
"authors": [
"radu gheorge",
"matthew lee hinman",
"roy russo"
],
"summary": "build scalable search applications using Elasticsearch without having to do complex low-level programming or understand advanced data science algorithms",
"publish_date": "2015-12-03",
"num_reviews": 18,
"publisher": "manning"
}
}
]
}
注意:以上结果中文档4(_id=4)匹配的原因是guide在summary存在。
由于我们正在多个字段进行搜索,我们可能希望提高某一字段的得分。 在下面的例子中,我们将“摘要”字段的得分提高了3倍,以增加“摘要”字段的重要性,从而提高文档 4 的相关性。
GET bookdb_index/book/_search
{
"query": {
"multi_match": {
"query": "elasticsearch guide",
"fields": ["title", "summary^3"]
}
},
"_source": ["title", "summary", "publish_date"]
}
[Results]
"hits": {
"total": 3,
"max_score": 3.9835935,
"hits": [
{
"_index": "bookdb_index",
"_type": "book",
"_id": "4",
"_score": 3.9835935,
"_source": {
"summary": "Comprehensive guide to implementing a scalable search engine using Apache Solr",
"title": "Solr in Action",
"publish_date": "2014-04-05"
}
},
{
"_index": "bookdb_index",
"_type": "book",
"_id": "3",
"_score": 3.1001682,
"_source": {
"summary": "build scalable search applications using Elasticsearch without having to do complex low-level programming or understand advanced data science algorithms",
"title": "Elasticsearch in Action",
"publish_date": "2015-12-03"
}
},
{
"_index": "bookdb_index",
"_type": "book",
"_id": "1",
"_score": 2.0281231,
"_source": {
"summary": "A distibuted real-time search and analytics engine",
"title": "Elasticsearch: The Definitive Guide",
"publish_date": "2015-02-07"
}
}
]
}
注意:Boosting不仅意味着计算得分乘法以增加因子。 实际的提升得分值是通过归一化和一些内部优化。参考 Elasticsearch guide查看更多
可以使用 AND / OR / NOT 运算符来微调我们的搜索查询,以提供更相关或指定的搜索结果。
在搜索API中是通过bool查询来实现的。 bool查询接受 must 参数(等效于AND),一个 must_not 参数(相当于NOT)或者一个 should 参数(等同于OR)。
例如,如果我想在标题中搜索一本名为 "Elasticsearch" 或 "Solr" 的书,AND由 "clinton gormley" 创作,但NOT由 "radu gheorge" 创作
GET bookdb_index/book/_search
{
"query": {
"bool": {
"must": [
{
"bool": {
"should": [
{"match": {"title": "Elasticsearch"}},
{"match": {"title": "Solr"}}
]
}
},
{
"match": {"authors": "clinton gormely"}
}
],
"must_not": [
{
"match": {"authors": "radu gheorge"}
}
]
}
}
}
[Results]
"hits": {
"total": 1,
"max_score": 2.0749094,
"hits": [
{
"_index": "bookdb_index",
"_type": "book",
"_id": "1",
"_score": 2.0749094,
"_source": {
"title": "Elasticsearch: The Definitive Guide",
"authors": [
"clinton gormley",
"zachary tong"
],
"summary": "A distibuted real-time search and analytics engine",
"publish_date": "2015-02-07",
"num_reviews": 20,
"publisher": "oreilly"
}
}
]
}
注意:您可以看到,bool查询可以包含任何其他查询类型,包括其他布尔查询,以创建任意复杂或深度嵌套的查询
在 Match检索 和多匹配检索中可以启用模糊匹配来捕捉拼写错误。 基于与原始词的 Levenshtein 距离来指定模糊度
GET bookdb_index/book/_search
{
"query": {
"multi_match": {
"query": "comprihensiv guide",
"fields": ["title","summary"],
"fuzziness": "AUTO"
}
},
"_source": ["title","summary","publish_date"],
"size": 1
}
[Results]
"hits": {
"total": 2,
"max_score": 2.4344182,
"hits": [
{
"_index": "bookdb_index",
"_type": "book",
"_id": "4",
"_score": 2.4344182,
"_source": {
"summary": "Comprehensive guide to implementing a scalable search engine using Apache Solr",
"title": "Solr in Action",
"publish_date": "2014-04-05"
}
},
{
"_index": "bookdb_index",
"_type": "book",
"_id": "1",
"_score": 1.2871116,
"_source": {
"summary": "A distibuted real-time search and analytics engine",
"title": "Elasticsearch: The Definitive Guide",
"publish_date": "2015-02-07"
}
}
]
}
"AUTO" 的模糊值相当于当字段长度大于5时指定值2。但是,设置80%的拼写错误的编辑距离为1,将模糊度设置为1可能会提高整体搜索性能。 有关更多信息, Typos and Misspellingsch
通配符查询允许您指定匹配的模式,而不是整个词组(term)检索
举例,要查找具有以 "t" 字母开头的作者的所有记录,如下所示
GET bookdb_index/book/_search
{
"query": {
"wildcard": {
"authors": {
"value": "t*"
}
}
},
"_source": ["title", "authors"],
"highlight": {
"fields": {
"authors": {}
}
}
}
[Results]
"hits": {
"total": 3,
"max_score": 1,
"hits": [
{
"_index": "bookdb_index",
"_type": "book",
"_id": "1",
"_score": 1,
"_source": {
"title": "Elasticsearch: The Definitive Guide",
"authors": [
"clinton gormley",
"zachary tong"
]
},
"highlight": {
"authors": [
"zachary <em>tong</em>"
]
}
},
{
"_index": "bookdb_index",
"_type": "book",
"_id": "2",
"_score": 1,
"_source": {
"title": "Taming Text: How to Find, Organize, and Manipulate It",
"authors": [
"grant ingersoll",
"thomas morton",
"drew farris"
]
},
"highlight": {
"authors": [
"<em>thomas</em> morton"
]
}
},
{
"_index": "bookdb_index",
"_type": "book",
"_id": "4",
"_score": 1,
"_source": {
"title": "Solr in Action",
"authors": [
"trey grainger",
"timothy potter"
]
},
"highlight": {
"authors": [
"<em>trey</em> grainger",
"<em>timothy</em> potter"
]
}
}
]
}
正则表达式能指定比通配符检索更复杂的检索模式,举例如下:
POST bookdb_index/book/_search
{
"query": {
"regexp": {
"authors": "t[a-z]*y"
}
},
"_source": ["title", "authors"],
"highlight": {
"fields": {
"authors": {}
}
}
}
[Results]
"hits": {
"total": 1,
"max_score": 1,
"hits": [
{
"_index": "bookdb_index",
"_type": "book",
"_id": "4",
"_score": 1,
"_source": {
"title": "Solr in Action",
"authors": [
"trey grainger",
"timothy potter"
]
},
"highlight": {
"authors": [
"<em>trey</em> grainger",
"<em>timothy</em> potter"
]
}
}
]
}
匹配短语查询要求查询字符串中的所有词都存在于文档中,按照查询字符串中指定的顺序并且彼此靠近。
默认情况下,这些词必须完全相邻,但您可以指定偏离值(slop value),该值指示在仍然考虑文档匹配的情况下词与词之间的偏离值。
GET bookdb_index/book/_search
{
"query": {
"multi_match": {
"query": "search engine",
"fields": ["title", "summary"],
"type": "phrase",
"slop": 3
}
},
"_source": [ "title", "summary", "publish_date" ]
}
[Results]
"hits": {
"total": 2,
"max_score": 0.88067603,
"hits": [
{
"_index": "bookdb_index",
"_type": "book",
"_id": "4",
"_score": 0.88067603,
"_source": {
"summary": "Comprehensive guide to implementing a scalable search engine using Apache Solr",
"title": "Solr in Action",
"publish_date": "2014-04-05"
}
},
{
"_index": "bookdb_index",
"_type": "book",
"_id": "1",
"_score": 0.51429313,
"_source": {
"summary": "A distibuted real-time search and analytics engine",
"title": "Elasticsearch: The Definitive Guide",
"publish_date": "2015-02-07"
}
}
]
}
注意:在上面的示例中,对于非短语类型查询,文档_id 1通常具有较高的分数,并且显示在文档_id 4之前,因为其字段长度较短。
然而,作为一个短语查询,词与词之间的接近度被考虑在内,所以文档_id 4分数更好
匹配词组前缀查询在查询时提供搜索即时类型或 "相对简单" "的自动完成版本,而无需以任何方式准备数据。
像match_phrase查询一样,它接受一个斜率参数,使得单词的顺序和相对位置没有那么 "严格"。 它还接受max_expansions参数来限制匹配的条件数以减少资源强度
GET bookdb_index/book/_search
{
"query": {
"match_phrase_prefix": {
"summary": {
"query": "search en",
"slop": 3,
"max_expansions": 10
}
}
},
"_source": ["title","summary","publish_date"]
}
注意:查询时间搜索类型具有性能成本。 一个更好的解决方案是将时间作为索引类型。 更多相关API查询 Completion Suggester API 或者 Edge-Ngram filters 。
query_string查询提供了以简明的简写语法执行多匹配查询 multi_match queries ,布尔查询 bool queries ,提升得分 boosting ,模糊匹配 fuzzy matching ,通配符 wildcards ,正则表达式 regexp 和范围查询 range queries 的方式。
在下面的例子中,我们对 "search algorithm" 一词执行模糊搜索,其中一本作者是 "grant ingersoll" 或 "tom morton"。 我们搜索所有字段,但将提升应用于文档2的摘要字段
GET bookdb_index/book/_search
{
"query": {
"query_string": {
"query": "(saerch~1 algorithm~1) AND (grant ingersoll) OR (tom morton)",
"fields": ["summary^2","title","authors","publisher"]
}
},
"_source": ["title","summary","authors"],
"highlight": {
"fields": {
"summary": {}
}
}
}
[Results]
"hits": {
"total": 1,
"max_score": 3.571021,
"hits": [
{
"_index": "bookdb_index",
"_type": "book",
"_id": "2",
"_score": 3.571021,
"_source": {
"summary": "organize text using approaches such as full-text search, proper name recognition, clustering, tagging, information extraction, and summarization",
"title": "Taming Text: How to Find, Organize, and Manipulate It",
"authors": [
"grant ingersoll",
"thomas morton",
"drew farris"
]
},
"highlight": {
"summary": [
"organize text using approaches such as full-text <em>search</em>, proper name recognition, clustering, tagging"
]
}
}
]
}
simple_query_string 查询是 query_string 查询的一个版本,更适合用于暴露给用户的单个搜索框,
因为它分别用 +
/ |
/ -
替换了 AND
/ OR
/ NOT
的使用,并放弃查询的无效部分,而不是在用户出错时抛出异常。
GET bookdb_index/book/_search
{
"query": {
"simple_query_string": {
"query": "(saerch~1 algorithm~1) + (grant ingersoll) | (tom morton)",
"fields": ["summary^2","title","authors","publisher"]
}
},
"_source": ["title","summary","authors"],
"highlight": {
"fields": {
"summary": {}
}
}
}
[Results]
# 结果同上
Java API 实现,代码见 https://github.com/whirlys/elastic-example/tree/master/UsefullESSearchSkill
由于公众号推送每篇字数不能超过 5w 字,所以拆成两篇。 今天很晚了,文章修正以及 Java API 实现明天再更新吧
更多内容请访问我的个人博客:http://laijianfeng.org 参考文章: 铭毅天下:[译]你必须知道的23个最有用的Elasticseaerch检索技巧 英文原文:23 Useful Elasticsearch Example Queries