前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >聊聊flink DataStream的window coGroup操作

聊聊flink DataStream的window coGroup操作

原创
作者头像
code4it
发布2019-01-12 13:06:36
2.3K0
发布2019-01-12 13:06:36
举报
文章被收录于专栏:码匠的流水账

本文主要研究一下flink DataStream的window coGroup操作

实例

代码语言:javascript
复制
dataStream.coGroup(otherStream)
    .where(0).equalTo(1)
    .window(TumblingEventTimeWindows.of(Time.seconds(3)))
    .apply (new CoGroupFunction () {...});
  • 这里展示了DataStream的window coGroup操作的基本用法

DataStream.coGroup

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/DataStream.java

代码语言:javascript
复制
@Public
public class DataStream<T> {
​
    //......
​
    public <T2> CoGroupedStreams<T, T2> coGroup(DataStream<T2> otherStream) {
        return new CoGroupedStreams<>(this, otherStream);
    }
​
    //......
}
  • DataStream的coGroup操作创建的是CoGroupedStreams

CoGroupedStreams

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/CoGroupedStreams.java

代码语言:javascript
复制
@Public
public class CoGroupedStreams<T1, T2> {
​
    private final DataStream<T1> input1;
​
    private final DataStream<T2> input2;
​
    public CoGroupedStreams(DataStream<T1> input1, DataStream<T2> input2) {
        this.input1 = requireNonNull(input1);
        this.input2 = requireNonNull(input2);
    }
​
    public <KEY> Where<KEY> where(KeySelector<T1, KEY> keySelector)  {
        Preconditions.checkNotNull(keySelector);
        final TypeInformation<KEY> keyType = TypeExtractor.getKeySelectorTypes(keySelector, input1.getType());
        return where(keySelector, keyType);
    }
​
    public <KEY> Where<KEY> where(KeySelector<T1, KEY> keySelector, TypeInformation<KEY> keyType)  {
        Preconditions.checkNotNull(keySelector);
        Preconditions.checkNotNull(keyType);
        return new Where<>(input1.clean(keySelector), keyType);
    }
​
    //.......
}
  • CoGroupedStreams提供了where操作,用于指定input1的keySelector,它创建并返回Where对象

Where

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/CoGroupedStreams.java

代码语言:javascript
复制
    @Public
    public class Where<KEY> {
​
        private final KeySelector<T1, KEY> keySelector1;
        private final TypeInformation<KEY> keyType;
​
        Where(KeySelector<T1, KEY> keySelector1, TypeInformation<KEY> keyType) {
            this.keySelector1 = keySelector1;
            this.keyType = keyType;
        }
​
        public EqualTo equalTo(KeySelector<T2, KEY> keySelector)  {
            Preconditions.checkNotNull(keySelector);
            final TypeInformation<KEY> otherKey = TypeExtractor.getKeySelectorTypes(keySelector, input2.getType());
            return equalTo(keySelector, otherKey);
        }
​
        public EqualTo equalTo(KeySelector<T2, KEY> keySelector, TypeInformation<KEY> keyType)  {
            Preconditions.checkNotNull(keySelector);
            Preconditions.checkNotNull(keyType);
​
            if (!keyType.equals(this.keyType)) {
                throw new IllegalArgumentException("The keys for the two inputs are not equal: " +
                        "first key = " + this.keyType + " , second key = " + keyType);
            }
​
            return new EqualTo(input2.clean(keySelector));
        }
​
        //......
    }   
  • Where对象提供了equalTo操作,用于指定input2的keySelector,它创建并返回EqualTo对象

EqualTo

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/CoGroupedStreams.java

代码语言:javascript
复制
        @Public
        public class EqualTo {
​
            private final KeySelector<T2, KEY> keySelector2;
​
            EqualTo(KeySelector<T2, KEY> keySelector2) {
                this.keySelector2 = requireNonNull(keySelector2);
            }
​
            @PublicEvolving
            public <W extends Window> WithWindow<T1, T2, KEY, W> window(WindowAssigner<? super TaggedUnion<T1, T2>, W> assigner) {
                return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType, assigner, null, null, null);
            }
        }
  • EqualTo对象提供了window操作,它创建并返回WithWindow对象

WithWindow

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/CoGroupedStreams.java

代码语言:javascript
复制
    @Public
    public static class WithWindow<T1, T2, KEY, W extends Window> {
        private final DataStream<T1> input1;
        private final DataStream<T2> input2;
​
        private final KeySelector<T1, KEY> keySelector1;
        private final KeySelector<T2, KEY> keySelector2;
​
        private final TypeInformation<KEY> keyType;
​
        private final WindowAssigner<? super TaggedUnion<T1, T2>, W> windowAssigner;
​
        private final Trigger<? super TaggedUnion<T1, T2>, ? super W> trigger;
​
        private final Evictor<? super TaggedUnion<T1, T2>, ? super W> evictor;
​
        private final Time allowedLateness;
​
        private WindowedStream<TaggedUnion<T1, T2>, KEY, W> windowedStream;
​
        protected WithWindow(DataStream<T1> input1,
                DataStream<T2> input2,
                KeySelector<T1, KEY> keySelector1,
                KeySelector<T2, KEY> keySelector2,
                TypeInformation<KEY> keyType,
                WindowAssigner<? super TaggedUnion<T1, T2>, W> windowAssigner,
                Trigger<? super TaggedUnion<T1, T2>, ? super W> trigger,
                Evictor<? super TaggedUnion<T1, T2>, ? super W> evictor,
                Time allowedLateness) {
            this.input1 = input1;
            this.input2 = input2;
​
            this.keySelector1 = keySelector1;
            this.keySelector2 = keySelector2;
            this.keyType = keyType;
​
            this.windowAssigner = windowAssigner;
            this.trigger = trigger;
            this.evictor = evictor;
​
            this.allowedLateness = allowedLateness;
        }
​
        @PublicEvolving
        public WithWindow<T1, T2, KEY, W> trigger(Trigger<? super TaggedUnion<T1, T2>, ? super W> newTrigger) {
            return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
                    windowAssigner, newTrigger, evictor, allowedLateness);
        }
​
        @PublicEvolving
        public WithWindow<T1, T2, KEY, W> evictor(Evictor<? super TaggedUnion<T1, T2>, ? super W> newEvictor) {
            return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
                    windowAssigner, trigger, newEvictor, allowedLateness);
        }
​
        @PublicEvolving
        public WithWindow<T1, T2, KEY, W> allowedLateness(Time newLateness) {
            return new WithWindow<>(input1, input2, keySelector1, keySelector2, keyType,
                    windowAssigner, trigger, evictor, newLateness);
        }
​
        public <T> DataStream<T> apply(CoGroupFunction<T1, T2, T> function) {
​
            TypeInformation<T> resultType = TypeExtractor.getCoGroupReturnTypes(
                function,
                input1.getType(),
                input2.getType(),
                "CoGroup",
                false);
​
            return apply(function, resultType);
        }
​
        @PublicEvolving
        @Deprecated
        public <T> SingleOutputStreamOperator<T> with(CoGroupFunction<T1, T2, T> function) {
            return (SingleOutputStreamOperator<T>) apply(function);
        }
​
        public <T> DataStream<T> apply(CoGroupFunction<T1, T2, T> function, TypeInformation<T> resultType) {
            //clean the closure
            function = input1.getExecutionEnvironment().clean(function);
​
            UnionTypeInfo<T1, T2> unionType = new UnionTypeInfo<>(input1.getType(), input2.getType());
            UnionKeySelector<T1, T2, KEY> unionKeySelector = new UnionKeySelector<>(keySelector1, keySelector2);
​
            DataStream<TaggedUnion<T1, T2>> taggedInput1 = input1
                    .map(new Input1Tagger<T1, T2>())
                    .setParallelism(input1.getParallelism())
                    .returns(unionType);
            DataStream<TaggedUnion<T1, T2>> taggedInput2 = input2
                    .map(new Input2Tagger<T1, T2>())
                    .setParallelism(input2.getParallelism())
                    .returns(unionType);
​
            DataStream<TaggedUnion<T1, T2>> unionStream = taggedInput1.union(taggedInput2);
​
            // we explicitly create the keyed stream to manually pass the key type information in
            windowedStream =
                    new KeyedStream<TaggedUnion<T1, T2>, KEY>(unionStream, unionKeySelector, keyType)
                    .window(windowAssigner);
​
            if (trigger != null) {
                windowedStream.trigger(trigger);
            }
            if (evictor != null) {
                windowedStream.evictor(evictor);
            }
            if (allowedLateness != null) {
                windowedStream.allowedLateness(allowedLateness);
            }
​
            return windowedStream.apply(new CoGroupWindowFunction<T1, T2, T, KEY, W>(function), resultType);
        }
​
        @PublicEvolving
        @Deprecated
        public <T> SingleOutputStreamOperator<T> with(CoGroupFunction<T1, T2, T> function, TypeInformation<T> resultType) {
            return (SingleOutputStreamOperator<T>) apply(function, resultType);
        }
​
        @VisibleForTesting
        Time getAllowedLateness() {
            return allowedLateness;
        }
​
        @VisibleForTesting
        WindowedStream<TaggedUnion<T1, T2>, KEY, W> getWindowedStream() {
            return windowedStream;
        }
    }
  • WithWindow可以设置windowAssigner、trigger、evictor、allowedLateness,它提供apply操作(with操作被标记为废弃)
  • apply操作接收CoGroupFunction,它内部是先根据两个keySelector创建UnionKeySelector,然后对两个input stream分别使用Input1Tagger及Input2Tagger进行map转换为TaggedUnion对象的stream,然后执行taggedInput1.union(taggedInput2)得到unionStream,之后使用UnionKeySelector将unionStream转换为KeyedStream,之后在对KeyedStream执行window操作,把原来的windowAssigner、trigger、evictor、allowedLateness都赋值过去,最后将用户定义的CoGroupFunction包装为CoGroupWindowFunction,然后调用windowedStream.apply方法
  • 可以看到apply操作内部转化的WindowedStream,其element类型为TaggedUnion;WindowedStream使用的KeyedStream,它的KeySelector为UnionKeySelector;而KeyedStream是基于TaggedUnion类型的DataStream,是taggedInput1.union(taggedInput2)操作而来;而taggedInput1及taggedInput2是对原始input stream进行map操作而来,使用的MapFunction分别是Input1Tagger及Input2Tagger

CoGroupFunction

flink-core-1.7.0-sources.jar!/org/apache/flink/api/common/functions/CoGroupFunction.java

代码语言:javascript
复制
@Public
@FunctionalInterface
public interface CoGroupFunction<IN1, IN2, O> extends Function, Serializable {
​
    void coGroup(Iterable<IN1> first, Iterable<IN2> second, Collector<O> out) throws Exception;
}
  • CoGroupFunction继承了Function,它定义了coGroup方法,该方法接收两个Iterable类型的element集合

Input1Tagger及Input2Tagger

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/CoGroupedStreams.java

代码语言:javascript
复制
    private static class Input1Tagger<T1, T2> implements MapFunction<T1, TaggedUnion<T1, T2>> {
        private static final long serialVersionUID = 1L;
​
        @Override
        public TaggedUnion<T1, T2> map(T1 value) throws Exception {
            return TaggedUnion.one(value);
        }
    }
​
    private static class Input2Tagger<T1, T2> implements MapFunction<T2, TaggedUnion<T1, T2>> {
        private static final long serialVersionUID = 1L;
​
        @Override
        public TaggedUnion<T1, T2> map(T2 value) throws Exception {
            return TaggedUnion.two(value);
        }
    }
  • Input1Tagger及Input2Tagger实现了MapFunction,该map方法返回的类型为TaggedUnion

TaggedUnion

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/CoGroupedStreams.java

代码语言:javascript
复制
    @Internal
    public static class TaggedUnion<T1, T2> {
        private final T1 one;
        private final T2 two;
​
        private TaggedUnion(T1 one, T2 two) {
            this.one = one;
            this.two = two;
        }
​
        public boolean isOne() {
            return one != null;
        }
​
        public boolean isTwo() {
            return two != null;
        }
​
        public T1 getOne() {
            return one;
        }
​
        public T2 getTwo() {
            return two;
        }
​
        public static <T1, T2> TaggedUnion<T1, T2> one(T1 one) {
            return new TaggedUnion<>(one, null);
        }
​
        public static <T1, T2> TaggedUnion<T1, T2> two(T2 two) {
            return new TaggedUnion<>(null, two);
        }
    }
  • TaggedUnion里头有one、two两个属性,它提供了两个静态工厂方法one及two,可以看到TaggedUnion对象要么one为null,要么two为null,不可能两个同时有值

UnionKeySelector

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/CoGroupedStreams.java

代码语言:javascript
复制
    private static class UnionKeySelector<T1, T2, KEY> implements KeySelector<TaggedUnion<T1, T2>, KEY> {
        private static final long serialVersionUID = 1L;
​
        private final KeySelector<T1, KEY> keySelector1;
        private final KeySelector<T2, KEY> keySelector2;
​
        public UnionKeySelector(KeySelector<T1, KEY> keySelector1,
                KeySelector<T2, KEY> keySelector2) {
            this.keySelector1 = keySelector1;
            this.keySelector2 = keySelector2;
        }
​
        @Override
        public KEY getKey(TaggedUnion<T1, T2> value) throws Exception{
            if (value.isOne()) {
                return keySelector1.getKey(value.getOne());
            } else {
                return keySelector2.getKey(value.getTwo());
            }
        }
    }
  • UnionKeySelector有两个KeySelector属性,它的getKey操作根据TaggedUnion来判断,如果是one,则使用keySelector1.getKey(value.getOne()),否则使用keySelector2.getKey(value.getTwo())

DataStream.union

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/DataStream.java

代码语言:javascript
复制
@Public
public class DataStream<T> {
​
    //......
​
    @SafeVarargs
    public final DataStream<T> union(DataStream<T>... streams) {
        List<StreamTransformation<T>> unionedTransforms = new ArrayList<>();
        unionedTransforms.add(this.transformation);
​
        for (DataStream<T> newStream : streams) {
            if (!getType().equals(newStream.getType())) {
                throw new IllegalArgumentException("Cannot union streams of different types: "
                        + getType() + " and " + newStream.getType());
            }
​
            unionedTransforms.add(newStream.getTransformation());
        }
        return new DataStream<>(this.environment, new UnionTransformation<>(unionedTransforms));
    }
​
    //......
}
  • DataStream的union操作,使用UnionTransformation创建了一个新的DataStream;注意union操作需要两个stream使用相同类型的element,这就是为什么WithWindow的apply操作对两个input stream分别使用Input1Tagger及Input2Tagger进行map转换为TaggedUnion对象来统一两个stream的element类型的原因

CoGroupWindowFunction

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/CoGroupedStreams.java

代码语言:javascript
复制
    private static class CoGroupWindowFunction<T1, T2, T, KEY, W extends Window>
            extends WrappingFunction<CoGroupFunction<T1, T2, T>>
            implements WindowFunction<TaggedUnion<T1, T2>, T, KEY, W> {
​
        private static final long serialVersionUID = 1L;
​
        public CoGroupWindowFunction(CoGroupFunction<T1, T2, T> userFunction) {
            super(userFunction);
        }
​
        @Override
        public void apply(KEY key,
                W window,
                Iterable<TaggedUnion<T1, T2>> values,
                Collector<T> out) throws Exception {
​
            List<T1> oneValues = new ArrayList<>();
            List<T2> twoValues = new ArrayList<>();
​
            for (TaggedUnion<T1, T2> val: values) {
                if (val.isOne()) {
                    oneValues.add(val.getOne());
                } else {
                    twoValues.add(val.getTwo());
                }
            }
            wrappedFunction.coGroup(oneValues, twoValues, out);
        }
    }
  • CoGroupWindowFunction继承了WrappingFunction(WrappingFunction继承了AbstractRichFunction,覆盖了父类的open、close、setRuntimeContext方法,用于管理wrappedFunction),实现了WindowFunction接口,其apply方法对TaggedUnion类型的Iterable数据进行拆解,分别拆分到oneValues及twoValues中,然后调用用户定义的CoGroupFunction的coGroup方法

小结

  • DataStream提供了coGroup方法,用于执行window coGroup操作,它返回的是CoGroupedStreams;CoGroupedStreams主要是提供where操作来构建Where对象;Where对象主要提供equalTo操作用于构建EqualTo对象;EqualTo对象提供window操作用于构建WithWindow对象;WithWindow可以设置windowAssigner、trigger、evictor、allowedLateness,它提供apply操作
  • CoGroupedStreams的WithWindow对象的apply操作接收CoGroupFunction,它内部是先根据两个keySelector创建UnionKeySelector,然后对两个input stream分别使用Input1Tagger及Input2Tagger进行map转换为TaggedUnion对象的stream,然后执行taggedInput1.union(taggedInput2)得到unionStream,之后使用UnionKeySelector将unionStream转换为KeyedStream,之后在对KeyedStream执行window操作,把原来的windowAssigner、trigger、evictor、allowedLateness都赋值过去,最后将用户定义的CoGroupFunction包装为CoGroupWindowFunction,然后调用windowedStream.apply方法
  • CoGroupedStreams的WithWindow对象的apply操作借助了DataStream的union操作类合并两个stream,然后转换为KeyedStream,这里关键的两个类分别是TaggedUnion及UnionKeySelector;TaggedUnion里头有one、two两个属性,它提供了两个静态工厂方法one及two,可以看到TaggedUnion对象要么one为null,要么two为null,不可能两个同时有值;UnionKeySelector有两个KeySelector属性,它的getKey操作根据TaggedUnion来判断,如果是one,则使用keySelector1.getKey(value.getOne()),否则使用keySelector2.getKey(value.getTwo())(借助TaggedUnion类统一两个stream的element类型,然后好执行union操作)
  • CoGroupWindowFunction继承了WrappingFunction(WrappingFunction继承了AbstractRichFunction,覆盖了父类的open、close、setRuntimeContext方法,用于管理wrappedFunction),实现了WindowFunction接口,其apply方法对TaggedUnion类型的Iterable数据进行拆解,分别拆分到oneValues及twoValues中,然后调用用户定义的CoGroupFunction的coGroup方法
  • CoGroupFunction继承了Function,它定义了coGroup方法,该方法接收两个Iterable类型的element集合;JoinedStreams的WithWindow对象的apply方法内部将JoinFunction或者FlatJoinFunction包装为CoGroupFunction(JoinFunction使用JoinCoGroupFunction包装,FlatJoinFunction使用FlatJoinCoGroupFunction包装),然后去调用CoGroupedStreams的WithWindow的apply方法;而JoinCoGroupFunction及FlatJoinCoGroupFunction继承了WrappingFunction,同时实现CoGroupFunction接口定义的coGroup方法,默认是遍历第一个集合,对其每个元素遍历第二个集合,挨个执行JoinFunction或FlatJoinFunction的join方法(这里的操作对集合为空的情况不做任何操作,因而实现的就是inner join效果;用户使用coGroup操作可以自定义CoGroupFunction实现outer join)

doc

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 实例
  • DataStream.coGroup
  • CoGroupedStreams
  • Where
  • EqualTo
  • WithWindow
    • CoGroupFunction
      • Input1Tagger及Input2Tagger
        • TaggedUnion
          • UnionKeySelector
            • DataStream.union
              • CoGroupWindowFunction
              • 小结
              • doc
              相关产品与服务
              大数据
              全栈大数据产品,面向海量数据场景,帮助您 “智理无数,心中有数”!
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档