编译:chux
出品:ATYUN订阅号
Facebook AI研究人员已经开发出一种方法来分析卫星图像,确定一个地区在遭遇火灾和洪水等自然灾害后,受到破坏的程度。在自然灾害发生后,该方法可以帮助应急人员识别受影响最严重的地区。
研究小组还创建了一个指标,用于衡量自然灾害造成的损害程度,称为灾害影响指数(DII),可用于推断严重的洪水或火灾灾害。
在2017年德克萨斯州Sugar Land附近的Hurricane Harvey识别损坏的道路时,卷积神经网络达到了88.8%的准确率,在Santa Rosa火灾中识别损坏的建筑物时准确率达到了81.1%。
灾难之后依赖于对某个区域的静态图像进行分析,而不像过去的基于AI的分析所关注的那样。该方法依赖于在自然灾害之前和之后拍摄的照片,并将每张照片分解为更小,更多的照片网格。
团队表示,“作为这项工作的一部分,我们只关注道路和建筑,但这可以扩展到量化灾害对其他一般自然和人造特征的影响。”
论文“From Satellite Imagery to Disaster Insights”,由Facebook AI Research的Saikat Basu和Guan Pang,以及CrowdAI的机器学习领导Jigar Doshi共同完成。这篇论文提交到了NeurIPS会议。
为了识别道路和建筑物,团队使用Spacenet和Deepglobe卫星图像,以及DigitalGlobe和Planet Labs的图像训练卷积神经网络。AI系统检查了德克萨斯州Sugar Land附近约55平方英里的区域和加利福尼亚州Santa Rosa附近46平方英里的区域。
在Santa Rosa火灾的案例中,地面实况数据来自加州林业和消防部门的消防资源和评估计划(FRAP)网站。
今年夏天,在今年7月于盐湖城举行的2018年计算机视觉与模式识别大会上,CrowdAI和Facebook与优步等公司,都参加了“深度全球挑战(Deepglobe challenge)”,通过卫星图像分析世界,AI也越来越多地在应对自然灾害中发挥重要的作用。
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有