前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >送你一份使用k近邻算法实现回归的实用指南(附代码、链接)

送你一份使用k近邻算法实现回归的实用指南(附代码、链接)

作者头像
数据派THU
发布2018-12-21 17:26:53
6270
发布2018-12-21 17:26:53
举报
文章被收录于专栏:数据派THU

作者:AISHWARYA SINGH, AUGUST 22, 2018

翻译:赵雪尧

校对:张玲

本文约4200字,建议阅读10分钟。

本文解释了在k近邻算法工作原理的基础上,简单介绍三种计算点距离方法。

简介

在我遇到的所有机器学习算法中,KNN是最容易学会的。尽管它很简单,但事实证明它在某些任务中非常有效(我们将在本文中看到)。

甚至于在某种情况下它是更好的选择,毕竟它可以同时用于分类和回归问题!不过,它更常用来解决分类问题,很少看到在回归任务中使用KNN。提起KNN可以被用于回归任务,只是想说明和强调一下当目标变量是自然连续的时候,KNN也会同样有效。

在本文中,我们将首先理解KNN算法背后的直观解释,看看计算点之间距离的不同方法,然后在Big Mart Sales数据集上用Python实现KNN算法。让我们开始吧!

后台回复“1119”,获取相关链接。

目录

1. 一个简单的例子来理解KNN背后的直观解释

2. KNN算法是如何工作的?

3. 点之间距离的计算方法

4. 如何选择k因子?

5. 应用在一个数据集上

6. 额外的资源

1. 一个简单的例子来理解KNN背后的直观解释

让我们从一个简单的例子开始。考虑下表——它包括10个人的身高、年龄和体重(目标)。如图所示,ID11的体重值丢失了。下面,我们需要根据这个人的身高和年龄来预测他的体重。

注意:该表中的数据不代表实际值。它只是作为一个例子来解释这个概念

为了更清楚地了解这一点,下面是从上表得出的身高与年龄的关系图:

在上图中,y轴代表一个人的身高(以英尺为单位),x轴代表年龄(以年为单位)。这些点是根据ID值编号的。黄色点(ID 11)是我们的测试点。

如果让你根据上图来确定编号ID11这个人的体重,你的答案会是什么?你可能会说,因为ID11更接近于点5和点1,所以这个人的体重应该与这些id相似,可能在72-77公斤之间(表中ID1和ID5的体重)。这是有道理的,但是算法是如何预测这些值的呢?我们会在这篇文章里找到答案。

2. KNN算法是如何工作的?

如上所述,KNN可以用于分类和回归问题。该算法使用“特征相似度”来预测任何新数据点的值。这意味着,根据与训练集中点的相似程度为新点赋值。从我们的示例中,我们知道ID11的高度和年龄与ID1和ID5相似,所以重量也大致相同。

如果这是一个分类问题,我们会把众数作为最终的预测。在本例中,我们有两个体重值——72和77。谁能猜到最终值是如何计算的?我们会将两个取值的平均值作为最终的预测结果。

下面是这个算法的具体步骤:

首先,计算新点与训练集中每一个点的距离。

选出与新点最接近的K个点(根据距离)。在这个例子中,如果K=3,点1,5,6将会被选择。在本文后续部分,我们会进一步探索选择正确K值的方法。

将所有点的均值作为新点的最终预测值。在这个例子中,我们可以得到ID11的体重=(77+72+60)/3 = 69.66kg。

接下来的几个小节里,我们将讨论以上三个步骤的具体细节。

3. 点之间距离的计算方法

第一步是计算新点与训练集中每个点之间的距离。计算这个距离的方法有很多种,其中最常见的方法是欧几里得法、曼哈顿法(连续的)和汉明距离法(离散的)。

  • 欧几里得距离:欧几里得距离是新点(x)和现有点(y)之间的平方差之和的平方根。
  • 曼哈顿距离:这是实向量之间的距离,用它们差的绝对值之和来计算。
  • 汉明距离:用于离散变量,如果(x)和(y)值相等,距离D就等于0。否则D = 1。

一旦计算完成新观测点与训练集中点之间的距离,下一步就是挑选最近的点。点的数量由K值决定。

4. 如何选择k因子?

第二步是确定K值。在为新观测点赋值时,K值决定了需要参考的邻点数量。

在我们的例子里,对于K=3,最近的点就是ID1、ID5和ID6。

ID11的预测体重是:

ID11 = (77+72+60)/3 ID11 = 69.66 kg

对于k=5,最近的点是ID1、ID4、ID5、ID6和ID10。

ID11的预测体重是:

ID 11 = (77+59+72+60+58)/5 ID 11 = 65.2 kg

我们注意到,基于k值,最终结果往往会改变。那么如何求出k的最优值呢?让我们根据训练集和验证集的误差计算来决定(毕竟,最小化误差是我们的最终目标!)

请看下面的图表,不同k值的训练错误和验证错误。

K值很低时(假设k = 1),该模型过拟合训练数据,从而导致验证集的错误率很高。另一方面,k取较大值时,模型在训练集和验证集上表现都很差。如果你仔细观察,验证误差曲线的值在k = 9时达到最小值,此时k值是模型的最优值(根据不同的数据集会有所不同)。这条曲线被称为“手肘曲线”(因为它的形状很像手肘),通常用于确定k值。

我们还可以使用网格搜索技术来确定k值。在下一个小节里我们将会介绍它。

5. 应用在一个数据集上

读到现在,你应当对算法有一个清晰的理解。如果你还有问题,请给我们的公众号留言,我们很乐意回答。现在,我们将在数据集中实现该算法。我已经使用了Big Mart sales数据集来展示算法实现的过程,大家可以从这个链接下载它。

  • 读取文件

import pandas as pd df = pd.read_csv('train.csv') df.head()

  • 计算缺失值

df.isnull().sum() #missing values in Item_weight and Outlet_size needs to be imputed mean = df['Item_Weight'].mean() #imputing item_weight with mean df['Item_Weight'].fillna(mean, inplace =True) mode = df['Outlet_Size'].mode() #imputing outlet size with mode df['Outlet_Size'].fillna(mode[0], inplace =True)

  • 处理分类变量,删除id列

df.drop(['Item_Identifier', 'Outlet_Identifier'], axis=1, inplace=True) df = pd.get_dummies(df)

  • 创建训练和测试集

from sklearn.model_selection import train_test_split train , test = train_test_split(df, test_size = 0.3) x_train = train.drop('Item_Outlet_Sales', axis=1) y_train = train['Item_Outlet_Sales'] x_test = test.drop('Item_Outlet_Sales', axis = 1) y_test = test['Item_Outlet_Sales']

  • 预处理——扩展特征

from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0, 1)) x_train_scaled = scaler.fit_transform(x_train) x_train = pd.DataFrame(x_train_scaled) x_test_scaled = scaler.fit_transform(x_test) x_test = pd.DataFrame(x_test_scaled)

  • 看看不同K值的错误率

#import required packages from sklearn import neighbors from sklearn.metrics import mean_squared_error from math import sqrt import matplotlib.pyplot as plt %matplotlib inline rmse_val = [] #to store rmse values for different k for K in range(20): K = K+1 model = neighbors.KNeighborsRegressor(n_neighbors = K) model.fit(x_train, y_train) #fit the model pred=model.predict(x_test) #make prediction on test set

error = sqrt(mean_squared_error(y_test,pred)) #calculate rmse rmse_val.append(error) #store rmse values print('RMSE value for k= ' , K , 'is:', error)

输出:

RMSE value for k = 1 is: 1579.8352322344945 RMSE value for k = 2 is: 1362.7748806138618 RMSE value for k = 3 is: 1278.868577489459 RMSE value for k = 4 is: 1249.338516122638 RMSE value for k = 5 is: 1235.4514224035129 RMSE value for k = 6 is: 1233.2711649472913 RMSE value for k = 7 is: 1219.0633086651026 RMSE value for k = 8 is: 1222.244674933665 RMSE value for k = 9 is: 1219.5895059285074 RMSE value for k = 10 is: 1225.106137547365 RMSE value for k = 11 is: 1229.540283771085 RMSE value for k = 12 is: 1239.1504407152086 RMSE value for k = 13 is: 1242.3726040709887 RMSE value for k = 14 is: 1251.505810196545

RMSE value for k = 15 is: 1253.190119191363 RMSE value for k = 16 is: 1258.802262564038 RMSE value for k = 17 is: 1260.884931441893 RMSE value for k = 18 is: 1265.5133661294733 RMSE value for k = 19 is: 1269.619416217394 RMSE value for k = 20 is: 1272.10881411344 #plotting the rmse values against k values curve = pd.DataFrame(rmse_val) #elbow curve curve.plot()

正如我们所讨论的,当k=1时,我们得到一个非常高的RMSE值。RMSE值随着k值的增加而减小。在k= 7时,RMSE约为1219.06,并进一步增加k值。我们可以有把握地说,在k=7这种情况下,会得到最好的结果。

这些是使用训练数据集得到的预测结果。现在让我们预测测试数据集的值并提交。

  • 在测试集上得到预测值

#reading test and submission files test = pd.read_csv('test.csv') submission = pd.read_csv('SampleSubmission.csv') submission['Item_Identifier'] = test['Item_Identifier'] submission['Outlet_Identifier'] = test['Outlet_Identifier'] #preprocessing test dataset test.drop(['Item_Identifier', 'Outlet_Identifier'], axis=1, inplace=True) test['Item_Weight'].fillna(mean, inplace =True) test = pd.get_dummies(test) test_scaled = scaler.fit_transform(test) test = pd.DataFrame(test_scaled)

#predicting on the test set and creating submission file predict = model.predict(test) submission['Item_Outlet_Sales'] = predict submission.to_csv('submit_file.csv',index=False)

提交这个文件,我得到了一个RMSE 1279.5159651297。

  • 实现网格搜索(Gridsearch)

为了确定k值,每次绘制手肘曲线是一个繁琐的过程。我们可以简单地使用gridsearch来找到最佳值。

from sklearn.model_selection import GridSearchCV params = {'n_neighbors':[2,3,4,5,6,7,8,9]} knn = neighbors.KNeighborsRegressor( model = GridSearchCV(knn, params, cv=5) model.fit(x_train,y_train) model.best_params

输出:

{'n_neighbors': 7}

6. 额外的资源

在本文中,我们介绍了KNN算法的工作原理及其在Python中的实现。这是最基本也是最有效的机器学习技术之一。对于在R中实现KNN,您可以浏览这篇文章:使用R的KNN算法。

在本文中,我们直接使用sklearn库中的KNN模型。您还可以从头实现KNN(我建议这样做!),这篇文章将对此进行介绍:KNN simplified。

如果你认为你很了解KNN,并且对该技术有扎实的掌握,在这个MCQ小测验中测试你的技能:关于KNN算法的30个问题。祝你好运!

译者附:注册下载数据集流程

1、注册一个账号,然后注册这个比赛

2、点击data

就可以愉快的下载运行并测试啦~

译者的分数是:

欢迎留言自己的分数和心得~

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-11-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据派THU 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档