Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >机器学习研究和开发所需的组件列表

机器学习研究和开发所需的组件列表

作者头像
iOSDevLog
发布于 2018-11-23 10:07:26
发布于 2018-11-23 10:07:26
7860
举报
文章被收录于专栏:iOSDevLogiOSDevLog
  • 线性代数: 机器学习开发人员需要数据结构,如向量,矩阵和张量,它们具有紧凑的语法和硬件加速操作。其他语言的例子:NumPy,MATLAB和R标准库,Torch。
  • 概率论: 各种随机数据生成:随机数和它们的集合; 概率分布; 排列; 收集,加权抽样等等。示例:NumPy和R标准库。
  • 数据输入输出: 在机器学习中,我们通常最感兴趣的是以下列格式解析和保存数据:纯文本,CSV等表格文件,SQL等数据库,Internet格式JSONXML,HTML和Web抓取。还有很多特定于域的格式。
  • 数据争用: 类似表的数据结构,数据工程工具:数据集清理,查询,拆分,合并,改组等。Pandas,dplyr。
  • 数据分析/统计: 描述性统计,假设检验和各种统计资料。R标准库,以及很多CRAN包。
  • 可视化: 统计数据可视化(非饼图):图形可视化,直方图,马赛克图,热图,树状图,3D表面,空间和多维数据可视化,交互式可视化,Matplotlib,Seaborn,Bokeh,ggplot2,ggmap,Graphviz,D3 .js。
  • 符号计算: 自动区分:SymPy,Theano,Autograd。
  • 机器学习包: 机器学习算法和求解器。Scikit-learn,Keras,XGBoost,E1071和caret。
  • 交互式原型设计环境: Jupyter,R studio,MATLAB和iTorch。

Here is a list of components that are needed for the successful machine learning research and development, and examples of popular libraries and tools of the type:

  • Linear algebra: Machine learning developer needs data structures like vectors, matrices, and tensors with compact syntax and hardware-accelerated operations on them. Examples in other languages: NumPy, MATLAB, and R standard libraries, Torch.
  • Probability theory: All kinds of random data generation: random numbers and collections of them; probability distributions; permutations; shuffling of collections, weighted sampling, and so on. Examples: NumPy, and R standard library.
  • Data input-output: In machine learning, we are usually most interested in the parsing and saving data in the following formats: plain text, tabular files like CSV, databases like SQL, internet formats JSON, XML, HTML, and web scraping. There are also a lot of domain-specific formats.
  • Data wrangling: Table-like data structures, data engineering tools: dataset cleaning, querying, splitting, merging, shuffling, and so on. Pandas, dplyr.
  • Data analysis/statistic: Descriptive statistic, hypotheses testing and all kinds of statistical stuff. R standard library, and a lot of CRAN packages.
  • Visualization: Statistical data visualization (not pie charts): graph visualization, histograms, mosaic plots, heat maps, dendrograms, 3D-surfaces, spatial and multidimensional data visualization, interactive visualization, Matplotlib, Seaborn, Bokeh, ggplot2, ggmap, Graphviz, D3.js.
  • Symbolic computations: Automatic differentiation: SymPy, Theano, Autograd.
  • Machine learning packages: Machine learning algorithms and solvers. Scikit-learn, Keras, XGBoost, E1071, and caret.
  • Interactive prototyping environment: Jupyter, R studio, MATLAB, and iTorch.

摘录来自: Oleksandr Sosnovshchenko. “Machine Learning with Swift: Artificial Intelligence for iOS。” Apple Books.

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018.10.22 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
R语言中的机器学习
转载自 R中文论坛(http://rbbs.biosino.org/Rbbs/posts/list/192.page)
Twcat_tree
2023/12/02
2080
最流行的机器学习R语言软件包大PK
The Data Incubator 中,有着最新的数据科学(data science)课程。其中大部分的课程都是基于企业和政府合作伙伴的需求而设立的。现在他们希望开发一更偏向数据为驱动的方式,以了解应该为数据科学企业的培训(data science corporate training,以及享受其提供的免费助学金的有意愿进入业界数据科学领域的硕博士生们教授什么样的内容。结果如下。 排名 什么是最流行的机器学习包(ML packages)?让我们来看一下基于包下载量(package downloads
机器人网
2018/04/24
2K0
最流行的机器学习R语言软件包大PK
史上最全!国外程序员整理的机器学习资源
本文汇编了一些机器学习领域的框架、库以及软件(按编程语言排序)。 C++ 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C, Python, Java 以及 MATLAB 接口,并支持 Windows, Linux, Android and Mac OS 操作系统。 通用机器学习 MLPack DLib ecogg shark Closure 通用机器学习 Closure Toolbox—Clojure 语言库与工具的分类目录 Go 自然语言处
CDA数据分析师
2018/02/05
2.4K0
Python相关机器学习‘武器库’
开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python。这些年来,接触和使用了很多Python工具包,特别是在文本处理,科学计算,机器学习和数据挖掘领域,有很多很多优秀的Python工具包可供使用,所以作为Pythoner,也是相当幸福的。如果仔细留意微博和论坛,你会发现很多这方面的分享,自己也Google了一下,发现也有同学总结了“Python机器学习库”,不过总感觉缺少点什么。最近流行一个词,全栈工程师(full st
智能算法
2018/04/02
1K0
高清图解:神经网络、机器学习、数据科学一网打尽|附PDF
人工神经网络(ANN),俗称神经网络,是一种基于生物神经网络结构和功能的计算模型。 它就像一个人工神经系统,用于接收,处理和传输计算机科学方面的信息。
CDA数据分析师
2019/05/17
1.5K0
高清图解:神经网络、机器学习、数据科学一网打尽|附PDF
【Python环境】Python 网页爬虫 &文本处理 & 科学计算 &机器学习 &数据挖掘兵器谱
曾经因为NLTK的缘故开始学习Python,之后渐渐成为我工作中的第一辅助脚本语言,虽然开发语言是C/C++,但平时的很多文本数据处理任务都交给了Python。离开腾讯创业后,第一个作品课程图谱也是选择了Python系的Flask框架,渐渐的将自己的绝大部分工作交给了Python。这些年来,接触和使用了很多Python工具包,特别是在文本处理,科学计算,机器学习和数据挖掘领域,有很多很多优秀的Python工具包可供使用,所以作为Pythoner,也是相当幸福的。其实如果仔细留意微博,你会发现很多这方面的分享
陆勤_数据人网
2018/02/26
8900
R语言︱常用统计方法包+机器学习包(名称、简介)
版权声明:博主原创文章,微信公众号:素质云笔记,转载请注明来源“素质云博客”,谢谢合作!! https://blog.csdn.net/sinat_26917383/article/details/50651464
悟乙己
2019/05/28
4.4K0
高清图解:神经网络、机器学习、数据科学一网打尽
人工神经网络(ANN),俗称神经网络,是一种基于生物神经网络结构和功能的计算模型。 它就像一个人工神经系统,用于接收,处理和传输计算机科学方面的信息。
代码医生工作室
2019/06/21
1.2K0
AI速查表:神经网络、机器学习、深度学习与数据科学一览
本文是Chatbots Life创始人Stefan Kojouharov花费数学心血搜集的AI概念速查表,是学习神经网络、机器学习、深度学习与大数据必备之良方。 1. 神经网络 2. 神经网络结构 3. 神经网络公式 4. 机器学习:概览 5. 机器学习:Scikit-learn算法 Scikit-learn是基于Python的功能强大的开源科学计算工具包,内含分类、回归、聚类、支持向量机、随机森林与Gradient Boosting等算法。 6. 机器学习:算法概览 7. Python数据科学 8.
CSDN技术头条
2018/02/11
8390
AI速查表:神经网络、机器学习、深度学习与数据科学一览
资源 | AI、神经网络、机器学习、深度学习以及大数据学习备忘单
以下是关于神经网络、机器学习、深度学习以及大数据学习的备忘单,其中部分内容和此前发布的《资源 | 值得收藏的 27 个机器学习的小抄》有所重复,大家可以两篇综合起来看。 提示:点击图片查看大图 神
AI科技大本营
2018/04/27
8950
资源 | AI、神经网络、机器学习、深度学习以及大数据学习备忘单
机器学习领域中最受欢迎的20个R语言包
大多数R包都深受Kagglers大神的喜爱,也被资深的笔者所赞美,而这些包的使用率或评价高低不仅仅取决于其它的包对于这个包的依赖程度。下面我们来分别看看这20个R包。
生信交流平台
2022/09/21
1.1K0
机器学习领域中最受欢迎的20个R语言包
【Python环境】Python机器学习库
Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy。其中Numpy是一个用python实现的科学计算包。包括: 一个强大的N维数组对象Array; 比较成熟的(广播)函数库; 用于整合C/C++和Fortran代码的工具包; 实用的线性代数、傅里叶变换和随机数生成函数。 SciPy是一个开源的Python算法库和数学工具包,SciPy包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算。其功能与软
陆勤_数据人网
2018/02/27
1.1K0
机器学习各语言领域工具库中文版汇总
主要资源来自TensorFlow中文社区,翻译借助谷歌翻译,仅用于资源分享。 以下是根据不同语言类型和应用领域收集的各类工具库,持续更新中。 C 通用机器学习 推荐人 -一个产品推荐的Ç语言库,利用了协同过滤。 计算机视觉 CCV – C / Cached /核心计算机视觉库,是一个现代化的计算机视觉库。 VLFeat – VLFeat是开源的计算机视觉算法库,有Matlab工具箱。 ---- C ++ 计算机视觉 OpenCV – 最常用的视觉库。有C ++,C,Python以及Java接口),支持Win
十四君
2019/11/27
2.5K0
“表”解机器学习
导语:在过去的几个月里,作者一直在专注于整理归纳AI的各类小要点。在被越来越多的朋友同事问及时,我决定将这些总结和心得的完整版分享给大家。为了增加内容的趣味性和可读性,我也在每个主题下面加了些注解,希望对你们有用。 另外,小编在这里邀请大家加入到我们,小编Tom邀请你一起搞事情! 神经网络 各种公式~ 机器学习 概 览 Scikit-learn 算法 这张图可以帮助你找到正确的估计器,这应该是机器学习汇总最难的部分。下面的流程图可以帮助快速查找文档,并对每种估计器做了大致的介绍,有助你更
IT派
2018/03/28
8810
“表”解机器学习
【机器学习】Python语言下的机器学习库
Python是最好的编程语言之一,在科学计算中用途广泛:计算机视觉、人工智能、数学、天文等。它同样适用于机器学习也是意料之中的事。 当然,它也有些缺点;其中一个是工具和库过于分散。如果你是拥有unix思维(unix-minded)的人,你会觉得每个工具只做一件事并且把它做好是非常方便的。但是你也需要知道不同库和工具的优缺点,这样在构建系统时才能做出合理的决策。工具本身不能改善系统或产品,但是使用正确的工具,我们可以工作得更高效,生产率更高。因此了解正确的工具,对你的工作领域是非常重要的。 这篇文章的目的就是
陆勤_数据人网
2018/02/26
8140
独家 | 在R中使用LIME解释机器学习模型
我曾经认为花几个小时来预处理数据是数据科学中最有价值的事情。这是我还作为一个初学者时的误解。现在,我意识到,能向一个对机器学习或其他领域的行话不太了解的外行解释你的预测和模型才更有意义。
数据派THU
2021/03/17
1.2K0
独家 | 在R中使用LIME解释机器学习模型
小白学数据 | 28张小抄表大放送:Python,R,大数据,机器学习
大数据文摘作品,转载要求见文末 作者 | Elaine,田桂英,Aileen 导读:前段时间小白学数据专栏出了一期Python小抄表,后台反应强烈(点击查看大数据文摘小白学数据系列文章《小白学数据之常用Python库“小抄表”》)。确实,数据科学越来越热,但是对于想要学好它的小白们却很头疼一个问题,需要记住的操作和公式实在是太多了!小抄表是很实用的办法,那么今天我们就为大家送出一份大杀器:28张小抄表合辑!不管你是Python或R的初学者,还是SQL或机器学习的入门者,或者准备学习Hadoop,这里都有能满
大数据文摘
2018/05/25
1.7K0
【20张图玩转机器学习】深度学习、神经网络和大数据信息梳理(下载)
【新智元导读】ChatbotLife 的创始人兼编辑 Stefan Kojouharov 收集并整理了一系列 AI 相关的信息图示,为了便于使用,还附带了注释和说明,所有的图(表)都可点击放大查看,推荐收藏。 神经网络:搞清结构就看这张 人是视觉动物,要了解神经网络,没有什么比用图将它们的形象画出来更加简单易懂了。这张信息图示里囊括 26 种架构,虽然不都是神经网络,但却覆盖了几乎所有常用的模型。直观地看到这些架构有助于你更好地了解它们的数学含义。 系统掌握神经网络,阅读【美丽的神经网络:13种细胞构筑的深
新智元
2018/03/27
1.4K0
【20张图玩转机器学习】深度学习、神经网络和大数据信息梳理(下载)
最全技术图谱!一文掌握人工智能各大分支技术
作者 | Stefan Kojouharov 编译 | 聂震坤 在过去的几个月中,我一直在收集有关人工智能的相关资料。随着各种的问题被越来越频繁的提及,我决定整理并分享有关人工智能、神经网络、机器学
用户1737318
2018/07/20
7620
怎样进行大数据的入门级学习?
文 | 郭小贤 数据科学并没有一个独立的学科体系,统计学,机器学习,数据挖掘,数据库,分布式计算,云计算,信息可视化等技术或方法来对付数据。 但从狭义上来看,我认为数据科学就是解决三个问题: 1. data pre-processing;(数据预处理) 2. data interpretation;(数据解读) 3.data modeling and analysis.(数据建模与分析) 这也就是我们做数据工作的三个大步骤: 1、原始数据要经过一连串收集、提取、清洗、整理等等的预处理过程,才能形成高质量的
CDA数据分析师
2018/02/24
7570
推荐阅读
相关推荐
R语言中的机器学习
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档