前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >hadoop框架结构的说明介绍

hadoop框架结构的说明介绍

原创
作者头像
IT小白龙
修改2018-10-16 09:57:31
8040
修改2018-10-16 09:57:31
举报
文章被收录于专栏:hadoop学习笔记

近年,随着互联网的发展特别是移动互联网的发展,数据的增长呈现出一种爆炸式的成长势头。单是谷歌的爬虫程序每天下载的网页超过1亿个(2000年数据,)数据的爆炸式增长直接推动了海量数据处理技术的发展。谷歌公司提出的大表、分布式文件系统和分布式计算的三大技术构架,解决了海量数据处理的问题。谷歌公司随即将设计思路开源,发表了具有划时代意义的三篇论文,很快根据谷歌设计思路的开源框架就出现了,就是如今非常火爆的hadoop、Maperduce和许多Nosql系统。这三大技术也是整个大数据技术的核心基础。

目前国内的hadoop商业发行版也是比较多,这些hadoop商业版大部分都是由国外发行的,纯国产的发行版不是很多,比如DKhadoop,可以说是目前国内自主做hadoop商业版比较好的了。下面就以大快搜索DKhadoop为例来给大家介绍一下hadoop框架结构!

图示:DKhadoop技术技术架构图
图示:DKhadoop技术技术架构图

hadoop框架结构核心:

hadoop的框架结构最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,MapReduce为海量的数据提供了计算。

大数据一体化开发框架:

大数据的应用开发过于偏向底层,设计技术面非常广泛,学习的难度自然要大的很多。对于新手入门更是难上加难。DKhadoop则是大快搜索将一系列技术框架在底层进行了重新封装。把大数据开发中的一些通用的,重复使用的基础代码、算法封装为类库,降低了大俗局的学习门槛,降低开发难度。

DKhadoop框架结构构成模块:

我们以DKhadoop发行版为例:

1、框架由:数据源与SQL引擎、数据采集(自定义爬虫)模块、数据处理模块、机器学习算法、自然语言处理模块、搜索引擎模块,六部分组成。

2、大快的大数据通用计算平台(DKH),已经集成相同版本号的开发框架的全部组件。如果在开源大数据框架上部署大快的开发框架,需要平台的组件支持如下:

(1)数据源与SQL引擎:DK.Hadoop、spark、hive、sqoop、flume、kafka

(2)数据采集:DK.hadoop

(3)数据处理模块:DK.Hadoop、spark、storm、hive

(4)机器学习和AI:DK.Hadoop、spark

(5)NLP模块:上传服务器端JAR包,直接支持

(6)搜索引擎模块:不独立发布

Dkhadoop是大快深度整合,重新编译后的HADOOP发行版,可单独发布。独立部署FreeRCH(大快大数据一体化开发框架)时,必需的组件。DK.HADOOP整合集成了NOSQL数据库,简化了文件系统与非关系数据库之间的编程;DK.HADOOP改进了集群同步系统,使得HADOOP的数据处理更加高效。

关于hadoop框架结构暂且简单介绍这些,感兴趣的朋友可以找一下大快搜索的DKhadoop试一下。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
云 HDFS
云 HDFS(Cloud HDFS,CHDFS)为您提供标准 HDFS 访问协议,您无需更改现有代码,即可使用高可用、高可靠、多维度安全、分层命名空间的分布式文件系统。 只需几分钟,您就可以在云端创建和挂载 CHDFS,来实现您大数据存储需求。随着业务需求的变化,您可以实时扩展或缩减存储资源,CHDFS 存储空间无上限,满足您海量大数据存储与分析业务需求。此外,通过 CHDFS,您可以实现计算与存储分离,极大发挥计算资源灵活性,同时实现存储数据永久保存,降低您大数据分析资源成本。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档