前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >MLSQL拥抱BigDL,轻轻松松无编码玩深度学习

MLSQL拥抱BigDL,轻轻松松无编码玩深度学习

作者头像
用户2936994
发布2018-10-15 15:07:36
4610
发布2018-10-15 15:07:36
举报
文章被收录于专栏:祝威廉

前言

原谅我,前半句是真的,后半句是噱头,但是真的很简化了。 MLSQL已经有一个相对来比较完善的Python Runtime,细节可以参看这篇文章,所以玩深度学习是很容易的,不过需要你提供一段tensorflow代码或者项目。

但是我一直认为这应该是高阶用户的使用场景,因为你必须要写一个完整的tf/keras之类的代码,这对使用者的要求还是颇高的(当然,你也可以使用别人写好的集成到MLSQL)。 能不能有一种开箱即用让人玩转深度学习的东西呢?于是我首先就集成了DeepLearning4J,事实上效果并不好(多方面原因,以后有时间展开讲)。直到遇到了BigDL,发现这个目标很快会实现了。

BigDL是用纯scala/Java实现的一套深度学习库这点很吸引哦,可以避免使用Python runtime 而导致的复杂环境要求。第二个是,我之前说,其实GPU真的很贵,但是大部分中小企业已经积累了足够多的CPU资源,并且很多情况下是用不满的,而BigDL针对Intel(毕竟是Intel出品)CPU做了很多的优化,这样就可以充分利用闲置的CPU资源。

前面说了下缘由,现在我们来看看如何通过MLSQL无需编码但却足够灵活的玩转深度学习。

环境准备

  1. 下载一个spark 2.3.2 发行版
  2. 下载MLSQL preview 版本

Ok,这就是全部工作。运行起来:

代码语言:javascript
复制
cd spark-2.3.2-bin-hadoop2.7/

./bin/spark-submit   --class streaming.core.StreamingApp \
--master local[*] \
--name sql-interactive \
streamingpro-mlsql-1.1.3-dev.jar   \
-streaming.name sql-interactive    \
-streaming.job.file.path file:///tmp/query.json \
-streaming.platform spark   \
-streaming.rest true   \
-streaming.driver.port 9003   \
-streaming.spark.service true \
-streaming.thrift false \
-streaming.enableHiveSupport true

query.json 包含 "{}" 就行了。启动后访问url地址:

代码语言:javascript
复制
http://127.0.0.1:9003

开始玩起来

首先我们看看都有哪些模块可以用:

image.png

不过那如果我只想看BigDL相关的模块,怎么办呢?没关系 我们过滤下:

image.png

恩 只有一个BigDL分类算法。现在我想看看这个算法的细节,比如文档和示例:

image.png

显示比较糟糕,大家将就下,然后把代码复制出来:

代码语言:javascript
复制
-- You can download the MNIST Data from [here](http://yann.lecun.com/exdb/mnist/). Unzip all the
-- files and put them in one folder(e.g. mnist).

set json = '''{}''';
load jsonStr.`json` as emptyData;

run emptyData as MnistLoaderExt.`` where
mnistDir="/Users/allwefantasy/Downloads/mnist"
as data;

train data as BigDLClassifyExt.`/tmp/bigdl` where
fitParam.0.featureSize="[28,28]"
and fitParam.0.classNum="10"
and fitParam.0.maxEpoch="1"
-- 实际运行时把 \\ 去掉
and fitParam.0.code=\\'''
                   def apply(params:Map[String,String])={
                        val model = Sequential()
                        model.add(Reshape(Array(1, 28, 28), inputShape = Shape(28, 28, 1)))
                        model.add(Convolution2D(6, 5, 5, activation = "tanh").setName("conv1_5x5"))
                        model.add(MaxPooling2D())
                        model.add(Convolution2D(12, 5, 5, activation = "tanh").setName("conv2_5x5"))
                        model.add(MaxPooling2D())
                        model.add(Flatten())
                        model.add(Dense(100, activation = "tanh").setName("fc1"))
                        model.add(Dense(params("classNum").toInt, activation = "softmax").setName("fc2"))
                    }

\\'''
;
predict data as BigDLClassifyExt.`/tmp/bigdl`;

register BigDLClassifyExt.`/tmp/bigdl` as mnistPredict;

select
vec_argmax(mnistPredict(vec_dense(features))) as predict_label,
label from data
as output;

示例说下载一个mnist数据集,解压后应该有四个文件:

image.png

现在把上面的代码黏贴到控制台(记得修改你数据路径),点击运行,恭喜,你的第一个深度学习算法就跑起来了。

image.png

跑完之后你会发现,好像结果差的比较多,那时训练次数太少了,那我怎么知道通过什么参数去修改呢?别急,用一个指令就知道了:

image.png

红框部分的值其实默认是1,你可以设置10轮左右,我测试过50轮,效果已经足够好了。

另外因为BigDL遵循了torch的标准,所以你的预测值需要+1 才能和实际值对上。

因为深度学习一般而言都是图片,也不会像mnist那样,是个特殊的文件,我想知道有没有什么好的模块可以处理图片,还是老办法,用sql找找看:

image.png

我没截图全,下面其实还有几个。大家看到的是基于BigDL实现的,我们看看具体的使用方式,

image.png

通过这个可以看到文档和代码。

现在我们黏贴出来,大概是这个样子的:

代码语言:javascript
复制
set json='''{}''';
load jsonStr.`json` as emptyData;

run emptyData as ImageLoaderExt.`/Users/allwefantasy/Downloads/jack`
-- 实际运行时把 \\ 去掉
where code=\\'''
        def apply(params:Map[String,String]) = {
         Resize(256, 256) -> CenterCrop(224, 224) ->
          MatToTensor() -> ImageFrameToSample()
       }
\\''' as images;
select imageName from images limit 1 as output;
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018.10.13 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • 环境准备
  • 开始玩起来
相关产品与服务
GPU 云服务器
GPU 云服务器(Cloud GPU Service,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于生成式AI,自动驾驶,深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档