前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >数字图像处理之锐化处理

数字图像处理之锐化处理

作者头像
努力努力再努力F
发布2018-09-11 11:03:59
1.7K0
发布2018-09-11 11:03:59
举报
文章被收录于专栏:fangyangcoder

数字图像处理之锐化处理

                                          by方阳

版权声明:本文为博主原创文章,转载请指明转载地址

http://www.cnblogs.com/fydeblog/p/6748411.html

今天介绍图像的锐化处理

相关知识:拉普拉斯算子、sobel算子、锐化滤波

1.理论知识

拉普拉斯算子是一个是n维欧几里德空间中的一个二阶微分算子,它的定义如下:

在x方向上

在y方向上

合起来就是

拉普拉斯强调的是图像中灰度的突变,并不强调图像的灰度缓变(灰度缓变由一阶微分,也就是梯度,图像应用是sobel算子,具体下面介绍)

根据上边的表达式,可以确定拉普拉斯算子的模板

例如:

        [ 0 1 0

          1 -4 0

          0  1  0]

这是以90度增量旋转的拉普拉斯算子,如果以45度增量旋转会是怎样的结果呢,结果如下:

        [1 1 1

         1 -8 1

         1  1 1]

注:这里的旋转是绕算子的中心

然后说说sobel算子,它的定义是

那么怎样理解呢,这里插个链接,对sobel算子的推导、说明、应用和参考代码都有,个人觉得非常不错。

 http://blog.csdn.net/tonyshengtan/article/details/43698711

2.本次内容

2.1任意选择一副灰度图像,使用拉普拉斯算子对图像进行锐化滤波,并和原图像叠加,实现对图像的增强。 2.2任意选择一副图像,使用 sobel 算子对图像进行锐化滤波,观察滤波效果。 2.3任意选择一副图像,构造一个中心系数为-24 的 5×5 的类似于拉普拉斯模板对图像进行锐化,与中心系数为-8 的 3×3 拉普拉斯算子的结果相比,是否能得到更加清晰的结果?

2.1 锐化之拉普拉斯算子

参考代码:

代码语言:javascript
复制
Laplace=[0 1 0;1 -4 1;0 1 0];
I=imread('cameraman.tif');
I1=fy_Sharpen_filter(I,Laplace,2);
I2=I+I1;
figure;
subplot(1,3,1);
imshow(I);
title('原图');
subplot(1,3,2);
imshow(I1);
title('拉普拉斯锐化输出');
subplot(1,3,3);
imshow(I2);
title('与原图叠加');

 fy_Sharpen_filter函数参考代码:

代码语言:javascript
复制
%image_in为输入图像,Operator是算子,image_out为输出图像
function image_out=fy_Sharpen_filter(image_in,Operator,dimension)
[m,n]=size(image_in);
[a,b]=size(Operator);
if dimension==3
 n=n/3;%由于我的灰度图像是185x194x3的,所以除了3,你们如果是PxQ的,就不要加了
end
 A=zeros(m+2*(a-1),n+2*(b-1));%构造矩阵
 B=A;%用来存放均值后A的值
 C=zeros(m,n);%存最后的输出结果
 for i=a:m+a-1
     for j=b:n+b-1
        A(i,j)= image_in(i-a+1,j-b+1);%填充图像到A
     end
 end
 [L,T]=size(A);
 %以下是实现均值相关运算
 for i=1:L-a+1
     for j=1:T-b+1
         for p=1:a
             for q=1:b
         B(i+(a-1)/2,j+(b-1)/2)=B(i+(a-1)/2,j+(b-1)/2)+A(p+i-1,q+j-1)*Operator(p,q);
             end
         end
     end
 end
B=uint8(B/(a*b));
for x=a:m+a-1
     for y=b:n+b-1
     C(x-a+1,y-b+1)=B(x,y);
     end
 end
image_out=uint8(C);

 运行结果:

2.2 锐化之sobel算子

参考代码:

代码语言:javascript
复制
Sobel_x=[-1 -2 -1;0 0 0;1 2 1];
Sobel_y=[-1 0 1;-2 0 2;-1 0 1];
I3=imread('cameraman.tif');
I4=fy_Sharpen_filter(I3,Sobel_x,2);
I5=fy_Sharpen_filter(I3,Sobel_y,2);
figure;
subplot(1,3,1);
imshow(I3);
title('原图');
subplot(1,3,2);
imshow(I4);
title('sobel水平锐化输出');
subplot(1,3,3);
imshow(I5);
title('sobel垂直锐化输出');

 实验结果:

2.3 5x5与3x3

参考代码:

代码语言:javascript
复制
Laplace3x3=[ 1 1 1;
             1 -8 1;
             1 1 1];
Laplace5x5=[ 0  0  2  0  0;
             0  4  0  4  0;
             2  0 -24 0  2;
             0  4  0  4  0;
             0  0  2  0  0];
I6=imread('circuit.jpg');
I7=fy_Sharpen_filter(I6,Laplace3x3,3);
I8=fy_Sharpen_filter(I6,Laplace5x5,3);
figure;
subplot(1,3,1);
imshow(I6);
title('原图');
subplot(1,3,2);
imshow(I7);
title('Laplace3x3');
subplot(1,3,3);
imshow(I8);
title('Laplace5x5');

 运行结果:

3.结果分析

(1)由图一可看出,拉普拉斯算子可提取出了图像的边缘特征,与原图叠加后新的图形的边缘被增强了

(2)由图二可看出,sobel算子的横向锐化模板和纵向锐化模板得出结果不相同,横向锐化得出的图形也偏横向,纵向偏纵向;

(3)由图三可看出,laplace5X5的锐化结果明显比laplace3X3的结果更加清晰,原因一个是模板大小,另一个是模板的变化状态,laplace5X5比laplace3X3的模板大且变化幅度大,锐化出的特征也就越明显。

最后,才学疏浅,如有不当地方还请海涵,感谢指点!

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017-04-22 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
图像处理
图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档