前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >StreamingPro 再次支持 Structured Streaming

StreamingPro 再次支持 Structured Streaming

作者头像
用户2936994
发布2018-08-27 11:43:43
2770
发布2018-08-27 11:43:43
举报
文章被收录于专栏:祝威廉

前言

之前已经写过一篇文章,StreamingPro 支持Spark Structured Streaming,不过当时只是玩票性质的,因为对Spark 2.0+ 版本其实也只是尝试性质的,重点还是放在了spark 1.6 系列的。不过时间在推移,Spark 2.0+ 版本还是大势所趋。所以这一版对底层做了很大的重构,StreamingPro目前支持Flink,Spark 1.6+, Spark 2.0+ 三个引擎了。

准备工作

下载streamingpro for spark 2.0的包,然后下载spark 2.1 的安装包。

你也可以在 streamingpro目录 找到spark 1.6+ 或者 flink的版本。最新的大体会按如下格式统一格式了:

代码语言:javascript
复制
streamingpro-spark-0.4.14-SNAPSHOT.jar  适配  spark 1.6+,scala 2.10
streamingpro-spark-2.0-0.4.14-SNAPSHOT.jar  适配  spark 2.0+,scala 2.11
streamingpro.flink-0.4.14-SNAPSHOT-online-1.2.0.jar 适配 flink 1.2.0, scala 2.10

测试例子

写一个json文件ss.json,内容如下:

代码语言:javascript
复制
{
  "scalamaptojson": {
    "desc": "测试",
    "strategy": "spark",
    "algorithm": [],
    "ref": [
    ],
    "compositor": [
      {
        "name": "ss.sources",
        "params": [
          {
            "format": "socket",
            "outputTable": "test",
            "port":"9999",
            "host":"localhost",
            "path": "-"
          },
          {
            "format": "com.databricks.spark.csv",
            "outputTable": "sample",
            "header":"true",
            "path": "/Users/allwefantasy/streamingpro/sample.csv"
          }
        ]
      },
      {
        "name": "ss.sql",
        "params": [
          {
            "sql": "select city from test left join sample on test.value == sample.name",
            "outputTableName": "test3"
          }
        ]
      },
      {
        "name": "ss.outputs",
        "params": [
          {
            "mode": "append",
            "format": "console",
            "inputTableName": "test3",
            "path": "-"
          }
        ]
      }
    ],
    "configParams": {
    }
  }
}

大体是一个socket源,一个sample文件。socket源是流式的,sample文件则是批处理的。sample.csv内容如下:

代码语言:javascript
复制
id,name,city,age
1,david,shenzhen,31
2,eason,shenzhen,27
3,jarry,wuhan,35

然后你在终端执行 nc -lk 9999 就好了。

然后运行spark程序:

代码语言:javascript
复制
SHome=/Users/allwefantasy/streamingpro
./bin/spark-submit   --class streaming.core.StreamingApp \
--master local[2] \
--name test \
$SHome/streamingpro-spark-2.0-0.4.14-SNAPSHOT.jar    \
-streaming.name test    \
-streaming.platform spark_structrued_streaming \
-streaming.job.file.path file://$SHome/ss.json

在nc 那个终端输入比如eason ,然后回车,马上就可以看到spark终端接受到了数据。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017.03.28 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • 准备工作
  • 测试例子
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档