

region_proposal_cat.png
在图像处理中,我们通常需要设置感兴趣的区域(ROI,region of interest),来简化我们的工作。也就是从图像中选择的一个图像区域,这个区域是我们图像分析所关注的重点。
在上一篇文章图像相似度比较和检测图像中的特定物中,我们使用直方图反向投影的方式来获取ROI,在这里我们采用另一种方式高斯反向投影。它通过基于高斯的概率密度函数(PDF)进行估算,反向投影得到对象区域,该方法可以看成是最简单的图像分割方法。
随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:X∼N(μ,σ2),
则其概率密度函数为

高斯分布的概率密度函数
其中,正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。
GaussianBackProjection的算法实现:
import com.cv4j.core.datamodel.ByteProcessor;
import com.cv4j.core.datamodel.ImageProcessor;
import com.cv4j.exception.CV4JException;
import com.cv4j.image.util.Tools;
public class GaussianBackProjection {
    public void backProjection(ImageProcessor src, ImageProcessor model, ByteProcessor dst) {
        if(src.getChannels() == 1 || model.getChannels() == 1) {
            throw new CV4JException("did not support image type : single-channel...");
        }
        float[] R = model.toFloat(0);
        float[] G = model.toFloat(1);
        int r = 0, g = 0, b = 0;
        float sum = 0;
        int mw = model.getWidth();
        int mh = model.getHeight();
        int index = 0;
        for (int row = 0; row < mh; row++) {
            for (int col = 0; col < mw; col++) {
                index = row*mw + col;
                b = model.toByte(2)[index]&0xff;
                g = model.toByte(1)[index]&0xff;
                r = model.toByte(0)[index]&0xff;
                sum = b + g + r;
                R[index] = r / sum;
                G[index] = g / sum;
            }
        }
        // 计算均值与标准方差
        float[] rmdev = Tools.calcMeansAndDev(R);
        float[] gmdev = Tools.calcMeansAndDev(G);
        int width = src.getWidth();
        int height = src.getHeight();
        // 反向投影
        float pr = 0, pg = 0;
        float[] result = new float[width*height];
        for (int row = 0; row < height; row++) {
            for (int col = 0; col < width; col++) {
                index = row*width + col;
                b = src.toByte(2)[index]&0xff;
                g = src.toByte(1)[index]&0xff;
                r = src.toByte(0)[index]&0xff;
                sum = b + g + r;
                float red = r / sum;
                float green = g / sum;
                pr = (float)((1.0 / (rmdev[1]*Math.sqrt(2 * Math.PI)))*Math.exp(-(Math.pow((red - rmdev[0]), 2)) / (2 * Math.pow(rmdev[1], 2))));
                pg = (float)((1.0 / (gmdev[1]*Math.sqrt(2 * Math.PI)))*Math.exp(-(Math.pow((green - gmdev[0]),2)) / (2 * Math.pow(gmdev[1], 2))));
                sum = pr*pg;
                if(Float.isNaN(sum)){
                    result[index] = 0;
                    continue;
                }
                result[index] = sum;
            }
        }
        // 归一化显示高斯反向投影
        float min = 1000;
        float max = 0;
        for(int i=0; i<result.length; i++) {
            min = Math.min(min, result[i]);
            max = Math.max(max, result[i]);
        }
        float delta = max - min;
        for(int i=0; i<result.length; i++) {
            dst.getGray()[i] =  (byte)(((result[i] - min)/delta)*255);
        }
    }
}GaussianBackProjection的具体使用
GaussianBackProjection gaussianBackProjection = new GaussianBackProjection();
     
gaussianBackProjection.backProjection(colorProcessor,sampleProcessor,byteProcessor);
result.setImageBitmap(byteProcessor.getImage().toBitmap());其中,colorProcessor表示原图的对象,sampleProcessor是选取区域的对象,byteProcessor表示反向投影结果。最终byteProcessor把结果展示到Android的ImageView上。

高斯反向投影.png
cv4j 是gloomyfish和我一起开发的图像处理库,纯java实现,目前的版本号是0.1.1
前段时间工作比较繁忙cv4j系列停更了一段时间,这次回来我们修复了一些bug。
上一篇cv4j系列的文章讲述了直方图投影,这次的高斯反向投影是另外一种选择。其实,模版匹配也能在图像中寻找到特定的目标,接下来我们的cv4j也会开发模版匹配的功能。
如果您想看该系列先前的文章可以访问下面的文集: