前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >消息队列使用的四种场景介绍

消息队列使用的四种场景介绍

作者头像
lyb-geek
发布于 2018-07-26 02:04:38
发布于 2018-07-26 02:04:38
1.7K0
举报
文章被收录于专栏:Linyb极客之路Linyb极客之路

消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题

实现高性能,高可用,可伸缩和最终一致性架构

使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ

二、消息队列应用场景

以下介绍消息队列在实际应用中常用的使用场景。异步处理,应用解耦,流量削锋和消息通讯四个场景

2.1异步处理

场景说明:用户注册后,需要发注册邮件和注册短信。传统的做法有两种 1.串行的方式;2.并行方式

(1)串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户端

(2)并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间

假设三个业务节点每个使用50毫秒钟,不考虑网络等其他开销,则串行方式的时间是150毫秒,并行的时间可能是100毫秒。

因为CPU在单位时间内处理的请求数是一定的,假设CPU1秒内吞吐量是100次。则串行方式1秒内CPU可处理的请求量是7次(1000/150)。并行方式处理的请求量是10次(1000/100)

小结:如以上案例描述,传统的方式系统的性能(并发量,吞吐量,响应时间)会有瓶颈。如何解决这个问题呢?

引入消息队列,将不是必须的业务逻辑,异步处理。改造后的架构如下:

按照以上约定,用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。注册邮件,发送短信写入消息队列后,直接返回,因此写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。因此架构改变后,系统的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了两倍

2.2应用解耦

场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。如下图

传统模式的缺点:

  • 假如库存系统无法访问,则订单减库存将失败,从而导致订单失败
  • 订单系统与库存系统耦合

如何解决以上问题呢?引入应用消息队列后的方案,如下图:

  • 订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功
  • 库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作
  • 假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦
2.3流量削锋

流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛

应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。

  • 可以控制活动的人数
  • 可以缓解短时间内高流量压垮应用
  • 用户的请求,服务器接收后,首先写入消息队列。假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面
  • 秒杀业务根据消息队列中的请求信息,再做后续处理
2.4日志处理

日志处理是指将消息队列用在日志处理中,比如Kafka的应用,解决大量日志传输的问题。架构简化如下

  • 日志采集客户端,负责日志数据采集,定时写受写入Kafka队列
  • Kafka消息队列,负责日志数据的接收,存储和转发
  • 日志处理应用:订阅并消费kafka队列中的日志数据

以下是新浪kafka日志处理应用案例:转自(http://cloud.51cto.com/art/201507/484338.htm)

(1)Kafka:接收用户日志的消息队列

(2)Logstash:做日志解析,统一成JSON输出给Elasticsearch

(3)Elasticsearch:实时日志分析服务的核心技术,一个schemaless,实时的数据存储服务,通过index组织数据,兼具强大的搜索和统计功能

(4)Kibana:基于Elasticsearch的数据可视化组件,超强的数据可视化能力是众多公司选择ELK stack的重要原因

2.5消息通讯

消息通讯是指,消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等

点对点通讯:

客户端A和客户端B使用同一队列,进行消息通讯。

聊天室通讯:

客户端A,客户端B,客户端N订阅同一主题,进行消息发布和接收。实现类似聊天室效果。

以上实际是消息队列的两种消息模式,点对点或发布订阅模式。模型为示意图,供参考。

三、消息中间件示例

3.1电商系统

消息队列采用高可用,可持久化的消息中间件。比如Active MQ,Rabbit MQ,Rocket Mq。

(1)应用将主干逻辑处理完成后,写入消息队列。消息发送是否成功可以开启消息的确认模式。(消息队列返回消息接收成功状态后,应用再返回,这样保障消息的完整性)

(2)扩展流程(发短信,配送处理)订阅队列消息。采用推或拉的方式获取消息并处理。

(3)消息将应用解耦的同时,带来了数据一致性问题,可以采用最终一致性方式解决。比如主数据写入数据库,扩展应用根据消息队列,并结合数据库方式实现基于消息队列的后续处理。

3.2日志收集系统

分为Zookeeper注册中心,日志收集客户端,Kafka集群和Storm集群(OtherApp)四部分组成。

  • Zookeeper注册中心,提出负载均衡和地址查找服务
  • 日志收集客户端,用于采集应用系统的日志,并将数据推送到kafka队列
  • Kafka集群:接收,路由,存储,转发等消息处理

Storm集群:与OtherApp处于同一级别,采用拉的方式消费队列中的数据

四、JMS消息服务

讲消息队列就不得不提JMS 。JMS(JAVA Message Service,java消息服务)API是一个消息服务的标准/规范,允许应用程序组件基于JavaEE平台创建、发送、接收和读取消息。它使分布式通信耦合度更低,消息服务更加可靠以及异步性。

在EJB架构中,有消息bean可以无缝的与JM消息服务集成。在J2EE架构模式中,有消息服务者模式,用于实现消息与应用直接的解耦。

4.1消息模型

在JMS标准中,有两种消息模型P2P(Point to Point),Publish/Subscribe(Pub/Sub)。

4.1.1 P2P模式

P2P模式包含三个角色:消息队列(Queue),发送者(Sender),接收者(Receiver)。每个消息都被发送到一个特定的队列,接收者从队列中获取消息。队列保留着消息,直到他们被消费或超时。

P2P的特点

  • 每个消息只有一个消费者(Consumer)(即一旦被消费,消息就不再在消息队列中)
  • 发送者和接收者之间在时间上没有依赖性,也就是说当发送者发送了消息之后,不管接收者有没有正在运行,它不会影响到消息被发送到队列
  • 接收者在成功接收消息之后需向队列应答成功

如果希望发送的每个消息都会被成功处理的话,那么需要P2P模式。(架构KKQ:466097527,欢迎加入)

4.1.2 Pub/sub模式

包含三个角色主题(Topic),发布者(Publisher),订阅者(Subscriber) 多个发布者将消息发送到Topic,系统将这些消息传递给多个订阅者。

Pub/Sub的特点

  • 每个消息可以有多个消费者
  • 发布者和订阅者之间有时间上的依赖性。针对某个主题(Topic)的订阅者,它必须创建一个订阅者之后,才能消费发布者的消息
  • 为了消费消息,订阅者必须保持运行的状态

为了缓和这样严格的时间相关性,JMS允许订阅者创建一个可持久化的订阅。这样,即使订阅者没有被激活(运行),它也能接收到发布者的消息。

如果希望发送的消息可以不被做任何处理、或者只被一个消息者处理、或者可以被多个消费者处理的话,那么可以采用Pub/Sub模型。

4.2消息消费

在JMS中,消息的产生和消费都是异步的。对于消费来说,JMS的消息者可以通过两种方式来消费消息。

(1)同步

订阅者或接收者通过receive方法来接收消息,receive方法在接收到消息之前(或超时之前)将一直阻塞;

(2)异步

订阅者或接收者可以注册为一个消息监听器。当消息到达之后,系统自动调用监听器的onMessage方法。

JNDI:Java命名和目录接口,是一种标准的Java命名系统接口。可以在网络上查找和访问服务。通过指定一个资源名称,该名称对应于数据库或命名服务中的一个记录,同时返回资源连接建立所必须的信息。

JNDI在JMS中起到查找和访问发送目标或消息来源的作用。

4.3JMS编程模型

(1) ConnectionFactory

创建Connection对象的工厂,针对两种不同的jms消息模型,分别有QueueConnectionFactory和TopicConnectionFactory两种。可以通过JNDI来查找ConnectionFactory对象。

(2) Destination

Destination的意思是消息生产者的消息发送目标或者说消息消费者的消息来源。对于消息生产者来说,它的Destination是某个队列(Queue)或某个主题(Topic);对于消息消费者来说,它的Destination也是某个队列或主题(即消息来源)。

所以,Destination实际上就是两种类型的对象:Queue、Topic可以通过JNDI来查找Destination。

(3) Connection

Connection表示在客户端和JMS系统之间建立的链接(对TCP/IP socket的包装)。Connection可以产生一个或多个Session。跟ConnectionFactory一样,Connection也有两种类型:QueueConnection和TopicConnection。

(4) Session

Session是操作消息的接口。可以通过session创建生产者、消费者、消息等。Session提供了事务的功能。当需要使用session发送/接收多个消息时,可以将这些发送/接收动作放到一个事务中。同样,也分QueueSession和TopicSession。

(5) 消息的生产者

消息生产者由Session创建,并用于将消息发送到Destination。同样,消息生产者分两种类型:QueueSender和TopicPublisher。可以调用消息生产者的方法(send或publish方法)发送消息。

(6) 消息消费者

消息消费者由Session创建,用于接收被发送到Destination的消息。两种类型:QueueReceiver和TopicSubscriber。可分别通过session的createReceiver(Queue)或createSubscriber(Topic)来创建。当然,也可以session的creatDurableSubscriber方法来创建持久化的订阅者。

(7) MessageListener

消息监听器。如果注册了消息监听器,一旦消息到达,将自动调用监听器的onMessage方法。EJB中的MDB(Message-Driven Bean)就是一种MessageListener。

深入学习JMS对掌握JAVA架构,EJB架构有很好的帮助,消息中间件也是大型分布式系统必须的组件。本次分享主要做全局性介绍,具体的深入需要大家学习,实践,总结,领会。

五、常用消息队列

一般商用的容器,比如WebLogic,JBoss,都支持JMS标准,开发上很方便。但免费的比如Tomcat,Jetty等则需要使用第三方的消息中间件。本部分内容介绍常用的消息中间件(Active MQ,Rabbit MQ,Zero MQ,Kafka)以及他们的特点。

5.1 ActiveMQ

ActiveMQ 是Apache出品,最流行的,能力强劲的开源消息总线。ActiveMQ 是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现,尽管JMS规范出台已经是很久的事情了,但是JMS在当今的J2EE应用中间仍然扮演着特殊的地位。

ActiveMQ特性如下:

⒈ 多种语言和协议编写客户端。语言: Java,C,C++,C#,Ruby,Perl,Python,PHP。应用协议: OpenWire,Stomp REST,WS Notification,XMPP,AMQP

⒉ 完全支持JMS1.1和J2EE 1.4规范 (持久化,XA消息,事务)

⒊ 对Spring的支持,ActiveMQ可以很容易内嵌到使用Spring的系统里面去,而且也支持Spring2.0的特性

⒋ 通过了常见J2EE服务器(如 Geronimo,JBoss 4,GlassFish,WebLogic)的测试,其中通过JCA 1.5 resource adaptors的配置,可以让ActiveMQ可以自动的部署到任何兼容J2EE 1.4 商业服务器上

⒌ 支持多种传送协议:in-VM,TCP,SSL,NIO,UDP,JGroups,JXTA

⒍ 支持通过JDBC和journal提供高速的消息持久化

⒎ 从设计上保证了高性能的集群,客户端-服务器,点对点

⒏ 支持Ajax

⒐ 支持与Axis的整合

⒑ 可以很容易得调用内嵌JMS provider,进行测试

5.2 RabbitMQ

RabbitMQ是流行的开源消息队列系统,用erlang语言开发。RabbitMQ是AMQP(高级消息队列协议)的标准实现。支持多种客户端,如:Python、Ruby、.NET、Java、JMS、C、PHP、ActionScript、XMPP、STOMP等,支持AJAX,持久化。用于在分布式系统中存储转发消息,在易用性、扩展性、高可用性等方面表现不俗。

结构图如下:(架构KKQ:466097527,欢迎加入)

几个重要概念:

Broker:简单来说就是消息队列服务器实体。

  Exchange:消息交换机,它指定消息按什么规则,路由到哪个队列。

  Queue:消息队列载体,每个消息都会被投入到一个或多个队列。

  Binding:绑定,它的作用就是把exchange和queue按照路由规则绑定起来。

  Routing Key:路由关键字,exchange根据这个关键字进行消息投递。

  vhost:虚拟主机,一个broker里可以开设多个vhost,用作不同用户的权限分离。

  producer:消息生产者,就是投递消息的程序。

  consumer:消息消费者,就是接受消息的程序。

  channel:消息通道,在客户端的每个连接里,可建立多个channel,每个channel代表一个会话任务。

消息队列的使用过程,如下:

(1)客户端连接到消息队列服务器,打开一个channel。

(2)客户端声明一个exchange,并设置相关属性。

(3)客户端声明一个queue,并设置相关属性。

(4)客户端使用routing key,在exchange和queue之间建立好绑定关系。

(5)客户端投递消息到exchange。

exchange接收到消息后,就根据消息的key和已经设置的binding,进行消息路由,将消息投递到一个或多个队列里。

5.3 ZeroMQ

号称史上最快的消息队列,它实际类似于Socket的一系列接口,他跟Socket的区别是:普通的socket是端到端的(1:1的关系),而ZMQ却是可以N:M 的关系,人们对BSD套接字的了解较多的是点对点的连接,点对点连接需要显式地建立连接、销毁连接、选择协议(TCP/UDP)和处理错误等,而ZMQ屏蔽了这些细节,让你的网络编程更为简单。ZMQ用于node与node间的通信,node可以是主机或者是进程。

引用官方的说法: “ZMQ(以下ZeroMQ简称ZMQ)是一个简单好用的传输层,像框架一样的一个socket library,他使得Socket编程更加简单、简洁和性能更高。是一个消息处理队列库,可在多个线程、内核和主机盒之间弹性伸缩。ZMQ的明确目标是“成为标准网络协议栈的一部分,之后进入Linux内核”。现在还未看到它们的成功。但是,它无疑是极具前景的、并且是人们更加需要的“传统”BSD套接字之上的一 层封装。ZMQ让编写高性能网络应用程序极为简单和有趣。”

特点是:

  • 高性能,非持久化
  • 跨平台:支持Linux、Windows、OS X等
  • 多语言支持; C、C++、Java、.NET、Python等30多种开发语言
  • 可单独部署或集成到应用中使用
  • 可作为Socket通信库使用

与RabbitMQ相比,ZMQ并不像是一个传统意义上的消息队列服务器,事实上,它也根本不是一个服务器,更像一个底层的网络通讯库,在Socket API之上做了一层封装,将网络通讯、进程通讯和线程通讯抽象为统一的API接口。支持“Request-Reply “,”Publisher-Subscriber“,”Parallel Pipeline”三种基本模型和扩展模型。

ZeroMQ高性能设计要点:

1、无锁的队列模型

对于跨线程间的交互(用户端和session)之间的数据交换通道pipe,采用无锁的队列算法CAS;在pipe两端注册有异步事件,在读或者写消息到pipe的时,会自动触发读写事件。

2、批量处理的算法

对于传统的消息处理,每个消息在发送和接收的时候,都需要系统的调用,这样对于大量的消息,系统的开销比较大,zeroMQ对于批量的消息,进行了适应性的优化,可以批量的接收和发送消息。

3、多核下的线程绑定,无须CPU切换

区别于传统的多线程并发模式,信号量或者临界区, zeroMQ充分利用多核的优势,每个核绑定运行一个工作者线程,避免多线程之间的CPU切换开销。

5.4 Kafka

Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。 对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群机来提供实时的消费。

Kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性:

  • 通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。(文件追加的方式写入数据,过期的数据定期删除)
  • 高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息
  • 支持通过Kafka服务器和消费机集群来分区消息
  • 支持Hadoop并行数据加载

Kafka相关概念

  • Broker

Kafka集群包含一个或多个服务器,这种服务器被称为broker[5]

  • Topic

每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)

  • Partition

Parition是物理上的概念,每个Topic包含一个或多个Partition.

  • Producer

负责发布消息到Kafka broker

  • Consumer

消息消费者,向Kafka broker读取消息的客户端。

  • Consumer Group

每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。

一般应用在大数据日志处理或对实时性(少量延迟),可靠性(少量丢数据)要求稍低的场景使用。

六、参考资料

(1)Jms

http://blog.sina.com.cn/s/blog_3fba24680100r777.html

http://blog.csdn.net/jiuqiyuliang/article/details/46701559(深入浅出JMS(一)--JMS基本概念)

(2)RabbitMQ

http://baike.baidu.com/link?url=s2cU-QgOsXan7j0AM5qxxlmruz6WEeBQXX-Bbk0O3F5jt9Qts2uYQARxQxl7CBT2SO2NF2VkzX_XZLqU-CTaPa

http://blog.csdn.net/sun305355024sun/article/details/41913105

(3)Zero MQ

http://www.searchtb.com/2012/08/zeromq-primer.html

http://blog.csdn.net/yangbutao/article/details/8498790

http://wenku.baidu.com/link?url=yYoiZ_pYPCuUxEsGQvMMleY08bcptZvwF3IMHo2W1i-ti66YXXPpLLJBGXboddwgGBnOehHiUdslFhtz7RGZYkrtMQQ02DV5sv9JFF4LZnK

(4)Kafka

http://baike.baidu.com/link?url=qQXyqvPQ1MVrw9WkOGSGEfSX1NHy4unsgc4ezzJwU94SrPuVnrKf2tbm4SllVaN3ArGGxV_N5hw8JTT2-lw4QK

http://www.infoq.com/cn/articles/apache-kafka/

http://www.mincoder.com/article/3942.shtml

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-05-30,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Linyb极客之路 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
vue cli3 build 区分测试环境和生产环境
三、vue.config.js 修改 outputDir:process.env.outputDir,
tianyawhl
2021/04/01
1.2K0
vue cli3 build 区分测试环境和生产环境
webpack从零搭建开发环境
为了方便也可以这么写,使用 npm run 命令这个命令执行的时候默认会把 node_modules 的.bin 文件放到全局上,执行之后销毁npm run buildnpm run dev
小丑同学
2020/09/21
1.3K0
VUE项目使用.env文件配置全局环境变量
注意:属性名必须以VUE_APP_开头,比如VUE_APP_URL VUE_APP_XXX
用户4464623
2020/09/10
3.1K0
uni-app的多环境部署配置
记录下如何对uni-app项目进行多环境打包部署改造 # 环境区分 官方文档说明: 开发环境和生产环境 uni-app 可通过 process.env.NODE_ENV 判断当前环境是开发环境还是生产环境。一般用于连接测试服务器或生产服务器的动态切换。 在HBuilderX 中,点击“运行”编译出来的代码是开发环境,点击“发行”编译出来的代码是生产环境 # 解决方案 使用基于vue-cli命令行方式创建项目 添加必要的环境变量, VUE_APP_ 起始,例如 VUE_APP_BASE_API 即在
薛定喵君
2021/05/18
3.8K0
【前端配置篇】vue项目之.env系列文件配置详解:.env文件配置全局环境变量
vue 会根据启动命令自动加载相对应的环境配置文件。vue是根据文件名进行加载的,所以上面说“不要乱起名,也无需专门控制加载哪个文件”
江一铭
2022/06/17
19.6K0
【前端配置篇】vue项目之.env系列文件配置详解:.env文件配置全局环境变量
基于 Vue-cli 3x的项目部署
项目中涉及使用了 vue-cli 3x脚手架、自动化部署工具jenkins、nginx等。
树酱
2020/07/03
8050
vue3+element-plus+router+vuex+axios从零开始搭建(2)
vue-cli 3.0x与vue-cli 2.0x最主要的区别是项目结构目录精简化,这也带来了许多问题,很多配置需要自己配置,
solate
2021/06/21
1.5K0
实战总结 Vue 学习看这一篇就够了
当前总结是本人在业余学习与实践过程后的总结与归纳,旨在检验自己的积累,也方便忘记时查阅,同时也希望能帮助那些这方面知识匮乏的同行门,总结是基于 vue2.x,vue-cli3.x ,主要记录些,vue 常用的指令、事件,监听、数据绑定、过滤器、组件、动画、vuex,vue-router 等日常工作中时常用到的东西,也有些常用的插件和开发工具的介绍与使用,以及部分性能优化的建议与实践,如有不对,或不足的地方,也请各位大神,指出来,学习学习。
网罗开发
2021/02/26
1.9K0
Vue CLI中使用webpack的多模式和环境变量
在vue项目中我们根据不同的环境去打不同的包, 如测试环境,开发环境, 正式环境 这个时候我们可以使用webpak中的模式和环境变量来操作
拿我格子衫来
2022/01/24
7020
electron套壳vue2项目
最近lender提了个需求,说最近项目可能要变动一下,把网页端变成桌面端,小手一挥,博主就开始库库的找。奈何网上教程一大堆,但是没找到一个对版的,不是安装过程有错,就是执行命令过程失误。一个教程文章得搜五个报错文章,虽然最终我做出来噜,但是很费劲,所以这篇用来总结一下。
刘小胖
2024/04/10
5092
electron套壳vue2项目
react配置生产环境和测试环境地址
写在前面 之前一直写关于vue的文章,经常看我文章的可能从上篇文章就知道了我已经不写vue了,以后就写react了,会持续更新,今天说一下我搭建框架的时候配置不同环境的步骤,大家可以借鉴以下,也可以自己搞一下! 在项目根目录创建两个环境文件 .env.development .env.production 文件内容 .env.developemnt REACT_APP_BASE_URL = 'https://test.com' REACT_APP_ENV = 'development' .env.pr
何处锦绣不灰堆
2021/05/06
2.8K0
Vue开发项目过程中环境变量的配置(vite、vue3、ts)
项目开发过程中,至少会经历开发环境、测试环境和生产环境(即正式环境)三个阶段。不同阶段请求的状态(如接口地址等)不尽相同,若手动切换接口地址是相当繁琐且易出错的。于是环境变量配置的需求就应运而生,我们只需做简单的配置,把环境状态切换的工作交给代码。
HelloWorldZ
2024/05/24
6320
Vue开发项目过程中环境变量的配置(vite、vue3、ts)
vue-cli3项目搭建配置以及性能优化
在之前的开发中主要用的是vue-cli2,最近空闲时间比较多,接下来有新项目,本着偷懒的本能,自己打算搭建一个基础包以备后期开发应用,并对其进行性能优化和配置
青梅煮码
2023/03/13
1.7K0
vue-cli3项目搭建配置以及性能优化
vue3+ts+element-plus 后端管理系统系列一(简介)
vue3-composition-admin 是一个管理端模板解决方案,它是基于vue3,ts和element-plus,项目都是以composition api风格编写。
星宇大前端
2021/02/02
10.3K1
Vue+ElementUI 搭建后台管理系统(实战系列八)
使用ElementUI已经有一段时间了,在一边上手开发后台管理系统的同事,也记录了一些笔记,一直都没有时间将这些零零散散的笔记总结起来,整理成一个比较系统详细一点的教程,可以留着以后来看。
王小婷
2021/11/24
7760
Vue+ElementUI 搭建后台管理系统(实战系列八)
vue vue-clie多环境配置
键:环境名,在运行命令的时候使用,如:npm run serve01就是执行该键所对应的值命令 值:vue-cli-service命令;serve表示是运行还是打包,serve表示是编译运行,build则是进行打包;--mode serve_01表示环境的模式名字,在创建配置文件的时候作为区分。
小蔚
2021/03/11
7380
vue    vue-clie多环境配置
vite开发环境、生产环境配置
一个项目可能会有开发版本、上线版本、测试版本等等多个版本,不同的环境会有不同请求api接口,就需更改一些基本配置,这时候就显得很麻烦,所以这里就使用了环境变量。我们只需做简单的配置,把环境状态切换的工作交给代码。
小蔚
2023/11/03
2.4K0
vite开发环境、生产环境配置
CROSS-ENV不同环境配置
项目背景 为了适应h5环境搭建需求,需要动态配置开发,测试,生产三种对应域名及其及打包命令。使用cross-env可以让配置环境更加清晰明了还好管理。 简介 cross-env的作用是不需要全局配置NODE_ENV在scripts脚本中修改NODE_ENV的值从而实现不同环境中proccess.env.NODE_ENV的不同,而config的工作原理就是基于NODE_ENV这个值的,所以推荐两者结合使用。 安装 cross-env
我不是费圆
2020/10/09
4.9K0
vue-cli3分环境打包,不压缩包大小问题
地址: https://cli.vuejs.org/zh/guide/mode-and-env.html
王念博客
2019/07/25
2.7K0
vue cli3 开发环境与生产环境配置(一)
初始化项目 vue create vue-asgisn cd vue-asgisn npm run serve 一、 已经初始化项目后, 为了开发方便以及维护, 新增一些文件夹 - store
yangdongnan
2019/04/22
5.8K0
vue cli3 开发环境与生产环境配置(一)
相关推荐
vue cli3 build 区分测试环境和生产环境
更多 >
LV.1
阿里资深无线开发工程师
目录
  • 二、消息队列应用场景
    • 2.1异步处理
    • 2.2应用解耦
    • 2.3流量削锋
    • 2.4日志处理
    • 2.5消息通讯
  • 三、消息中间件示例
    • 3.1电商系统
    • 3.2日志收集系统
  • 四、JMS消息服务
    • 4.1消息模型
    • 4.1.2 Pub/sub模式
    • 4.2消息消费
    • 4.3JMS编程模型
  • 五、常用消息队列
    • 5.1 ActiveMQ
    • 5.2 RabbitMQ
    • 5.3 ZeroMQ
    • 5.4 Kafka
  • 六、参考资料
    • (1)Jms
    • (2)RabbitMQ
    • (3)Zero MQ
    • (4)Kafka
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档