建议阅读时间:5~10分钟
0 前言
感谢粉丝:疯琴,以下分享是疯琴在学习《Python神经网络》时的笔记,总结得很棒,感谢疯琴的乐于分享精神,相信这篇笔记一定会帮助到大家。
1 基本概念
神经网络也是机器学习的一种实现,可以应用在有监督学习和无监督学习,因为中间可以有较多层,所以属于深度学习方法。
神经网络的名字很唬人,其实概念挺朴素的,是由含一个输入层,一个输出层和若干隐藏层构成的有向无环图(这名字也唬人),看图像一目了然。
为啥叫隐藏层呢,就是因为和输入输出没关系,看不见,有点儿神秘。每层的每个结点借助生物的概念称为神经元,各层之间神经元相互链接。
2 神经网络训练过程
算法训练包含两个阶段:输入向输出传送叫前向馈送信号;输出向输入传送叫反向误差传播。把输入前馈计算得到输出,把输出与目标值比对,计算误差,把误差反向传播修正链接权重。具体过程:
3 训练的注意点
4 自己解决的困惑
1.12节反向传播误差到更多层中,最后一张图将误差传播到了输入层,这给我造成了困惑,想了大半天,因为在后面调整误差的时候只用到了隐藏层和输出层的误差,其实在三层的网络中,只需要用输出层误差计算Who和用隐藏层误差计算Wih,计算输入层的误差其实没有用,书中应该是借用这一步推导更明确一下传播误差的方法。
2.4.4节wih初始化时正态分布的标准差取1/sqrt(传入链接数目),代码中隐藏层传入链接数目用hnodes,输出层传入链接数目用onodes,我认为传入链接数目应该是上一层的结点数,所以分别应该是inodes和hnodes。
训练时cpu使用率40%,跑了一会以后升高到60%,临近计算结束又降到40%,不是一直跑满。
5 训练结果展示
MNIST手写数字识别结果如下:
本文分享自 程序员郭震zhenguo 微信公众号,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
本文参与 腾讯云自媒体同步曝光计划 ,欢迎热爱写作的你一起参与!