前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >支持向量机2

支持向量机2

作者头像
Echo_fy
发布于 2018-06-20 08:28:10
发布于 2018-06-20 08:28:10
4970
举报
文章被收录于专栏:Echo is learningEcho is learning

整理自李航老师统计机器学习

拍照版纸质笔记。

目录:

  • 线性支持向量机与软间隔最大化
  • 学习的对偶算法
  • 支持向量
  • 合页损失函数
  • 核函数与核技巧
  • 非线性支持向量机
  • 序列最小最优化(SMO)算法

序列最小最优化(SMO)算法

支持向量机的学习问题即凸二次规划的求解问题,有很多的算法可以进行求解。但是当训练样本的数目非常多的时候,算法会十分的低效,以至于无法使用。

SMO算法可以快速高效的求解出学习问题。它的一个基本思路是:当所有的解的变量都满足KKT条件时,那么这就是最优化问题的解;否则,选取两个变量,固定其他的变量,构造一个只含两个变量的凸二次规划问题,求解这个问题得到的解就会更加接近原始问题的解,而且2个变量的凸二次规划问题具有解析解,求解简单;这样做可以大大加快算法的计算速度。

具体的SMO算法不做解释。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018-04-03 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
支持向量机
在逻辑回归问题中,我们希望输入sigmod函数中的函数值离0越远越好,因为离0越远,我们判断的"把握"就越大。也就是说我们希望找到一个分类器使得待分类点距离分类的平面尽可能的远,换言之也是一样分类判断的把握尽可能大。这就延伸出了一种二分类模型-支持向量机 支持向量机就是一种二分类模型,其基本模型定义为特征空间上间隔最大的线性分类器,其学习策略就是间隔最大化。
爱编程的小明
2022/09/05
1K0
支持向量机
支持向量机(SVM) (2)
在上一次的介绍中,我们稍微了解到了关于support vector machine 的一些入门知识。今天,我们将真正进入支持向量机的算法之中,大体的框架如下: 1、最大间隔分类器 2、线性可分的情况(详细) 3、原始问题到对偶问题的转化 4、序列最小最优化算法 1、最大间隔分类器 函数间隔和几何间隔相差一个∥w∥ 的缩放因子(感觉忘记的可以看一下上一篇文章)。按照前面的分析,对一个数据点进行分类,当它的间隔越大的候,分类正确的把握越大。对于一个包含n 个点的数据集,我们可以很自然地定义它的间
昱良
2018/04/04
8660
支持向量机(SVM) (2)
从零推导支持向量机 (SVM)
AI 科技评论按,本文作者张皓,目前为南京大学计算机系机器学习与数据挖掘所(LAMDA)硕士生,研究方向为计算机视觉和机器学习,特别是视觉识别和深度学习。
AI科技评论
2019/10/31
9100
从零推导支持向量机 (SVM)
如何理解SVM | 支持向量机之我见
囫囵吞枣看完SVM,个人感觉如果不好好理解一些概念,或说如果知其然而不知其所以然的话,不如不看。因此我想随便写一写,把整个思路简单地整理一遍。:) SVM与神经网络 支持向量机并不是神经网络,这两个完全是两条不一样的路吧。不过详细来说,线性SVM的计算部分就像一个单层的神经网络一样,而非线性SVM就完全和神经网络不一样了(是的没错,现实生活中大多问题是非线性的),详情可以参考知乎答案(https://www.zhihu.com/question/22290096)。 这两个冤家一直不争上下,最近基于神经网络
用户1332428
2018/03/09
1.4K0
如何理解SVM | 支持向量机之我见
理解支持向量机
支持向量机是机器学习中最不易理解的算法之一,它对数学有较高的要求。之前SIGAI微信公众号已经发过“用一张图理解SVM脉络”,“理解SVM的核函数和参数”这两篇文章,今天重启此话题,对SVM的推导做一个清晰而透彻的介绍,帮助大家真正理解SVM,掌握其精髓。市面上有不少讲解支持向量机的文章和书籍,但真正结构清晰、触达精髓的讲解非常少见。
SIGAI学习与实践平台
2019/10/08
7420
理解支持向量机
支持向量机SVM原理
【数之道】支持向量机SVM是什么,八分钟直觉理解其本质_哔哩哔哩_bilibili
zhangjiqun
2024/12/14
2290
支持向量机SVM原理
【机器学习】支持向量机
本文介绍了支持向量机模型,首先介绍了硬间隔分类思想(最大化最小间隔),即在感知机的基础上提出了线性可分情况下最大化所有样本到超平面距离中的最小值。然后,在线性不可分的情况下,提出一种软间隔线性可分方式,定义了一种hinge损失,通过拉格朗日函数和对偶函数求解参数。其次,介绍线性模型中的一种强大操作—核函数,核函数不仅提供了支持向量机的非线性表示能力, 使其在高维空间寻找超平面,同时天然的适配于支持向量机。再次,介绍SMO优化方法加速求解支持向量机,SMO建立于坐标梯度上升算法之上,其思想与EM一致。最后,介绍支持向量机在回归问题上的应用方式,对比了几种常用损失的区别。
yuquanle
2019/12/18
5760
支持向量机
,分类学习最基本的想法就是基于训练集D在样本空间中找到一个划分超平面可能有很多。直观上看,应该去找位于两类训练样本“正中间”的划分超平面,因为该划分超平面对训练样本局部扰动的“容忍性”最好。例如由于训练集的局限性或噪声的因素,训练集外的样本可能比训练样本更接近两个类的分隔界,这将使许多划分朝平面出现错误,而红色的超平面受影响最小。换言之,这个划分超平面所产生的分类结果是最鲁棒的,对未见示例的泛化能力最强。
狼啸风云
2022/09/28
7210
支持向量机
支持向量机(SVM)学习笔记
简单点讲,SVM 就是一种二类分类模型,他的基本模型是的定义在特征空间上的间隔最大的线性分类器,SVM 的学习策略就是间隔最大化。
EmoryHuang
2022/10/31
5660
支持向量机(SVM)学习笔记
支持向量机之SMO-------7
上次详细的介绍了用最小二乘法求解结构风险最小化问题的分类支持向量机,并在文章最后给出了求解对偶问题的序列最小优化(Sequential Minimal Optimization, SMO)算法解的形式,但是并未提到其具体的解法。今天我将参考由John C. Platt 在1998年发表的一片名为《Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines》的论文中提到的比较快的二次规划优化算法
昱良
2018/04/04
6570
支持向量机之SMO-------7
超详细支持向量机知识点,面试官会问的都在这里了
导语:持续准备面试中,准备的过程中,慢慢发现,如果死记硬背的话很难,可当推导一遍并且细细研究里面的缘由的话,面试起来应该什么都不怕,问什么问题都可以由公式推导得到结论,不管问什么,公式摆在那里,影响这个公式的变量就在那,你问什么我答什么,共勉!
AI科技大本营
2019/10/10
8710
超详细支持向量机知识点,面试官会问的都在这里了
【ML】支持向量机(SVM)从入门到放弃再到掌握
朋友,你通过各种不同的途经初次接触支持向量机(SVM)的时候,是不是会觉得这个东西耳熟能详,感觉大家都会,却唯独自己很难理解? 每一次你的老板或者同仁让你讲解SVM的时候,你觉得你看过这么多资料,使用过这么多次,讲解应该没有问题,但偏偏在分享的时候结结巴巴,漏洞百出? 每一次机器学习相关的面试在问到支持向量机(SVM)的时候,尽管你觉得你都准备好了,可是一次又一次败下阵来,以至于觉得问那些问题的人(是不是脑子有…)是那么的厉害,每一次都能精准发觉到你的不足和漏洞,让你怀疑你掌握的是假的SVM,然后让你怀疑人生? 那还等什么,快来看看这篇文章吧,原价998,现在只要。。。(不好意思,扯偏了。)
全栈程序员站长
2022/09/06
5670
【ML】支持向量机(SVM)从入门到放弃再到掌握
支持向量机通俗导论(理解SVM的三层境界)【转载】
原文链接:https://blog.csdn.net/v_JULY_v/article/details/7624837
用户6021899
2019/08/21
9280
支持向量机通俗导论(理解SVM的三层境界)【转载】
支持向量机(Support Vector Machines,SVM)
线性可分SVM学习方法,对线性不可分训练数据是不适用的,怎么将它扩展到线性不可分,需要修改硬间隔最大化,使其成为软间隔最大化。
Michael阿明
2020/07/13
1.9K1
支持向量机(Support Vector Machines,SVM)
支持向量机1--线性SVM用于分类原理
在机器学习中,支持向量机(SVM,也叫支持向量网络),是在分类与回归分析中分析数据的监督式学习模型与相关的学习算法。是由Vapnik与同事(Boser等,1992;Guyon等,1993;Vapnik等,1997)在AT&T贝尔实验室开发。支持向量机是基于统计学习框架与由Chervonenkis(1974)和Vapnik(1982,1995)提出Vapnik–Chervonenkis理论上的最强大的预测方法之一。给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率二元线性分类器。SVM模型是将实例表示为空间中的点,这样映射就使得单独类别的实例被尽可能宽的明显的间隔分开。然后,将新的实例映射到同一空间,并基于它们落在间隔的哪一侧来预测所属类别。
数据STUDIO
2021/06/24
1.8K0
机器学习-20:MachineLN之SVM(2)
其实想一下从上学到毕业,学了那么多有多少是真实用到的呢?但是这些事潜移默化影响你的东西,其实我们学习的并不是真实的会这些知识(并且有很多知识现在过时),而是我们学习的是一种快速学习一门知识的能力,要的就是这个快字;怎么一个快字了得,对不光快还要稳;直到今天才真正了解一些教育的含义,并不是死记硬背,而是举一反三,并不是拿来主义,而是针对特定问题特定场景特定解决;并不是随波逐流,而是扬起自己的帆远航;并不是svm,而是一种境界;
MachineLP
2022/05/09
2290
机器学习-20:MachineLN之SVM(2)
支持向量机原理篇之手撕线性SVM
Python版本: Python3.x 运行平台: Windows IDE: Sublime text3 一、前言 说来惭愧,断更快半个月了,本打算是一周一篇的。感觉SVM瞬间难了不少,推导耗费了很多时间,同时身边的事情也不少,忙了许久。本篇文章参考了诸多大牛的文章写成的,对于什么是SVM做出了生动的阐述,同时也进行了线性SVM的理论推导,以及最后的编程实践,公式较多,还需静下心来一点一点推导。 本文出现的所有代码,均可在我的github上下载,欢迎Follow、Star:https://githu
机器学习算法工程师
2018/03/06
2K0
支持向量机原理篇之手撕线性SVM
SVM 概述
支持向量机的线性分类:是给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率二元线性分类器。SVM模型是将实例表示为空间中的点,这样映射就使得单独类别的实例被尽可能宽的明显的间隔分开。然后,将新的实例映射到同一空间,并基于他们落在间隔的哪一侧来预测所属类别。
为为为什么
2022/10/28
1.2K0
SVM 概述
《机器学习》-- 第六章 支持向量机
支持向量机(Support Vector Machine,SVM)是一种经典的二分类模型,基本模型定义为特征空间中最大间隔的线性分类器,其学习的优化目标便是间隔最大化,因此支持向量机本身可以转化为一个凸二次规划求解的问题。
fireWang
2020/07/31
8110
《机器学习》-- 第六章 支持向量机
支持向量机(SVM)--(4)
回忆:在上一篇文章中我们谈到为了使支持向量机能够处理非线性问题,进而引进核函数,将输入空间的输入数据集通过一个满足Mercer核条件的核函数映射到更高维或者无线维的希尔伯特再生核空间,将线性不可分转化
昱良
2018/04/04
9930
支持向量机(SVM)--(4)
相关推荐
支持向量机
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档